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Summary

Goals:

* Understand how to use wireless in diagnostics, control and safety applications.

 Work with USCAR, help the automotive industry migrate cost effectively to
wireless on the factory floor.

 Interact with Vendor Partners and Standards organizations .

Deliverables:

* Provide a standardized testing mechanism and test plan.

» Define best practices for wireless operation in factories.
* Tools for real time fault diagnosis and QoS assessment.

* Provide a capability for “record / playback” style investigation of interference
phenomenon.

* Provide design tools for the planning stage of a wireless setup.

* Report on technology trends in wireless systems for control.
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Summary

Goals:

* Understand industry requirements for time synchronization.

« Evaluate the capabilities of IEEE 1588 hardware time synchronization for
control, diagnostics and safety systems.

« Study factors affecting time precision in an industrial setting for both wired and
wireless networks.

* Develop formal approaches for controller design, to utilize time stamped data
for robust operation in the face of network vagaries.

Deliverables:

* A comprehensive report on time synchronization requirements for industrial
networks.

» Atest-bed for characterizing the application of low level time stamping on a
networked control system.

+ A configurable factory scale simulation tool to evaluate synchronization and to
assess the need for additional time synchronization capability.
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Performance of Protocols and software
wireless networks stack effects

Protocol Stacks for Bluetooth
and Wi-Fi are designed for OS| Model | TCP/IP

data applications. wl

Presentation I Application
For control systems where |
time precision of transmission | Session I |
Is vital, the stack is a major rm— I em—— I
source of time jitter in

communication. Hetm:-rh Internet
. . Data-ink I

Also, an error in physical Network Interface

layer can propagate through Physmal

the protocol stack to manifest
as huge time delays.

051 model

We are currently in the process or isolating the time delay contribution from the
protocol stack alone so that it is possible to compare protocols independent of the
physical layer.
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Performance of
wireless networks

The Bluetooth protocol
stack is particularly OBE —— — —
interesting from this e repy | Commands S——
perspective since it is T E——
offers a lot of flexibility in
how data is handled at

the lower layers.

This allows the user to
write custom “profiles” for
the system that can
demand synchronous
responses for instance.
There are provisions for
hardwiring data handling  Some implementations that modify this stack to improve
functions all the way to determinism already exist as COTS solutions.

the baseband as well.
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% New result

wireless networks stack effects
Mean Round Trip Time Delays with minimum Reflections
A very interesting illustration of e | | | o
effects introduced by the protocol 006l i |
stack in the Bluetooth system is
plotted here on the right. % . s |
When the physical medium is e
maintained at close to ideal we see £ 00 ]
a distinct change in the average J
network latency when the data 0080 st g g e '
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Packet Size (bytes)

payload touches 75 Bytes
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Performance of Protocols and software
wireless networks stack effects
Mean Round Trip Time Delays with minimum Reflections

A very interesting illustration of
effects introduced by the protocol
stack in the Bluetooth system is

plotted here on the right.

When the physical medium is
maintained at close to ideal we see

a distinct change in the average
network latency when the data
payload touches 75 Bytes.

% New result
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% New result

Performance of Protocols and software
wireless networks stack effects

A very interesting illustration of
effects introduced by the protocol
stack in the Bluetooth system is

plotted here on the right.

When the physical medium is
maintained at close to ideal we see

a distinct change in the average
network latency when the data
payload touches 75 Bytes.

a

Data packets for control networks
are typically sized around this value
making this a serious effect to

consider.

Mean Round Trip Time Delays with minimum Reflections

NSF Engineering Research Center for Reconfigurable Manufacturing Systems

@\ University of Michigan College of Engineering

0.065
o
0.06¢ / 1
2 0.055} i -
°] i
Mean Round Trip Time Delays under normal conditions
0.065 : : L
B
?_‘?‘&-—B“a"d’ E‘Mn"'-v/’
0.06f ! .
@ !
2 0.055 H 1
o] 1
Q ;
L4h] i
4, H
£ 005 ! 1
= {
0.045F2""%, ,P—-‘"ra‘“ - -
0.0
%5 70 75 80 85
Packet Size (bytes)

#13



Precision time
Synchronization
and time-stamping

Performance of
wireless networks

Radio coverage Real world Control and
mapping for performance of Data Acquisition
multi-cell NTP and with low level
configurations IEEE 1588 Time stamping

Protocols and Physical layer
software stack and medium
effects effects

—» Performance with increasing distance
Performance under the influence of active radio interference
Performance with multipath reflections

m NSF Engineering Research Center for Reconfigurable Manufacturing Systems
‘v' University of Michigan College of Engineering

#14



Performance of Physical layer and
wireless networks medium effects

Average round trip delay and standard deviation versus distance
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Performance of
wireless network

With radio communication, the 4

physical channel quality is always a,

source of uncertainty.
0

Average round trip delay and standard deviation versus distance

T
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Early in the course of our research ¢
we took up the task of documenting 4 >
performance parameters with 5 } } |
changing physical parameters. | ‘ | | |
A set of results presented here 0 20 40 60 80 100 120
shows the effect of distance and ™ ]
interference on network delays and° I
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Performance of Physical layer and
wireless networks @fmadium effects

With radio communication, the
physical channel quality is
always a source of uncertainty.

Early in the course of our £
research we took up the task of &
documenting performance
parameters with changing
physical parameters.

A tabulated set of results
presented here shows the effect
of distance and interference on
network delays and jitter.

a) 802.11a
b) 802.11b
c) 802.11g
d) Bluetooth
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Performance of
wireless network

D

With radio communication, the
physical channel quality is
always a source of uncertainty.

Early in the course of our
research we took up the task of
documenting performance
parameters with changing
physical parameters.

A tabulated set of results
presented here shows the effect
of distance and interference on
network delays and jitter.
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Performance of Physical layer and
wireless networks medium effects

Another significant factor affecting the physical channel is multipath interference.
An experiment shown below measures Bluetooth latency under conditions where
there were no reflections and then in a reflection rich environment.
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Performance of
wireless network

The histograms below show the delay spread for these two runs. The distance
between the two devices was fixed at 2 meters (well within the rated distance) and
there were no active interference sources (the test chambers provide a -200dB
attenuation to the outside world).

The reflections in the second run of the experiment result in an order of
magnitude increase in the delay times.
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Performance of
wireless network
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Wireless Control Network Simulator

Interference Parameters

Device Measurement Application and Radio Parameters o Coexistence Interferer)ce Source
e Actual Device Pair e Node Number ¢ Interference Source Distance
e 1 Client 1 Server e Node Distance ¢ Interference Source Signal Power
¢ Ideal Conditions e Signal Power or
e Application Data Requirements ¢ Interference Model File
Protocol
Stack Delay

Protocol Stack o
Application and

Processing _ Interference
Delay [ RadioDelay ||IIC_— >  Delay

Estimation Estimation
= = =
e Device Specific e Delays due to arbitration e Delay with Interference
Wireless Protocol e Link Management dynamics. e Delay Output Graph
Stack Delay « Delay output file
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Wireless Control Network Simulator

Control System
Simulation.
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Protocol Stack o
Application and

Processing _ Interference
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Estimation SRl
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e Sampling Rate e Optimal Sampling rate. e Failure Modes.
o System Bandwidth o Ideal packet size.  Recovery strategies.
e Min RPI o Packet prioritization and e Fault tolerance/
determinism improvement Robusthess
algorithms.
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Wireless Control Network Simulator

Simulation.
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Performance of Radio coverage
wireless networks mapping

Inputs from industry suggest that implementation of wireless will first be at a
production cell level. Inter-cell interference is therefore an important factor
and requires layout planning ahead of installation.

To support this we are developing a simulation tool capable of predicting radio
coverage over a wireless cell. Overlaying spatial representation of radio
coverage over the existing cell geometry.

Using data from our performance measurement exercise we can look for
trouble spots in the form of weak fields, shadow zones, interference and
leakage outside the cell.

We can also overlay coverage maps of non-conventional radio feeders like the
leaky coax cable or directional patch antenna.
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Precision time NTP and
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The test-bed
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The test-bed
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The test-bed
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The test-bed
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The test-bed \
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The test-bed
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The test-bed
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Precision time

Synchronization

NTP and
IEEE 1588

Two nodes can be precisely
synchronized in time to one another

over the network.

This can be done once a real time
model of transmission
delays over a network is produced.

Two prevalent techniques for this
are NTP and IEEE 1588.

NTP implements this algorithm

as a software daemon running
on top the operating system.

~

J

© -

Foilow_up e

2

Delay_Req e

3

Delay _Resp
4

Tirrme: Tirme

NTP accuracy ~ 100 ps
1588 accuracy ~ <1 us

IEEE 1588 mandates the use of
dedicated firmware to perform
this function.

NSF Engineering Research Center for Reconfigurable Manufacturing Systejns
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1588 is amenable to being
grafted onto field-bus sensors

and actuators.




Precision time NTP and
Synchronization IEEE 1588 New result

Magnitude of time jitter in a wired system

16- Mean = 0.4326 milliseconds
Further. investigation iS required 1k Standard Deviation = 0.1776 milliseconds |
to understand time
synchronization accuracy Il

over wireless networks.

Initial experiments with NTP
show a large increase in the

1 | | | | L 1 L I
0 10 20 30 40 50 60 70 80 90 100

jitter as estimated by the time Time (Vinues)
SynCh ron Izatlon algorlth m % IMagnitlude of tlime jitte‘r ina w‘ireless ‘system‘
This reflects the deg ree of 80 Mean = 4.8596 milliseconds

Standard Deviation = 7.7402 milliseconds |

uncertainty in the system.

Looking at 1588 synchronization
over wireless will allow us to
justify the need for low level

time synchronization.

1 1 1 1 | | | 1 1 ]
0 10 20 30 40 50 60 70 80 90 100

Time (Minutes)
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Radio coverage Real world Control and
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configurations IEEE 1588 Time stamping

Protocols and Physical layer
software stack and medium
effects effects

Designing controllers capable of utilizing time stamped datae—
Designing hardware with 1588 derived time stamps
Best practices for time stamping
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Precision time Low level
Synchronization time stamping

Once two nodes are synchronized, time stamping data at the source
ensures that even with unknown delays in the transmission, information about
when the event occurred is conserved in a global time frame.

Controller
g L N
< Network_l/ .
. Actuator
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Precision time Low level
Synchronization time stamping

Once two nodes are synchronized, time stamping data at the source
ensures that even with unknown delays in the transmission, information about
when the event occurred is conserved in a global time frame.
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Precision time NTP and

Synchronization IEEE 1588 New result
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|

The test-bed \_

—

Real time control using an embedded
processor?

*Preemptive scheduling
*Hard real-time execution
*Minimal interrupt latency
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Precision time Low level
Synchronization time stamping
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Precision time Low level
Synchronization time stamping

Once two nodes are synchronized, time stamping data at the source
ensures that even with unknown delays in the transmission, information about
when the event occurred is conserved in a global time frame.
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‘ Real TIme Actions
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Take aways

+ As expected with microwave transmissions in closed
spaces, multi-path propagation effects dominate
system performance.

» There are algorithm improvements that in simulation
show appreciable improvement.

* We can predict failure conditions in the physical
medium banking on our catalog of device tests.

« We have to study the protocol stack from a timing
perspective.

« With precise time synchronization and time stamping,
control is not wholly dependent on real-time network
transmission.
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Milestones and Future Plans

September 2008

November 2008

February 2009

March 2009

April 2009

April 2009

Summer 2009

Fall 2009

N

N\

Device testing at Ford AMTD

Development work on Wireless Network Simulator
begun.

Completed comprehensive catalog of test results

Design approval for 1588 test-bed

Performance evaluation of wireless protocol stack
begun

1588 test-bed Phase Il completed

First release of the Wireless Network Simulator
1588 test-bed phase lli

N

Wireless cell layout tool
1588 test-bed phase IV
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Thank You

Questions?
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