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Abstract

In today’s global competitive marketplace, there is intense pressure for manufacturing industries to continuously reduce and eliminate costly,

unscheduled downtime and unexpected breakdowns. With the advent of Internet and tether-free technologies, companies necessitate dramatic

changes in transforming traditional ‘‘fail and fix (FAF)’’ maintenance practices to a ‘‘predict and prevent (PAP)’’ e-maintenance methodology. E-

maintenance addresses the fundamental needs of predictive intelligence tools to monitor the degradation rather than detecting the faults in a

networked environment and, ultimately to optimize asset utilization in the facility.

This paper introduces the emerging field of e-maintenance and its critical elements. Furthermore, performance assessment and prediction tools

are introduced for continuous assessment and prediction of a particular product’s performance, ultimately enable proactive maintenance to prevent

machine from breakdowns. Recent advances on intelligent prognostic technologies and tools are discussed. Several case studies are introduced to

validate these developed technologies and tools.

# 2006 Elsevier B.V. All rights reserved.

Keywords: E-maintenance; Prognostics; Predictive maintenance; Remote monitoring

www.elsevier.com/locate/compind

Computers in Industry 57 (2006) 476–489
1. Introduction

A lot of machine maintenance today is either reactive (fixing

or replacing equipment after it fails) or blindly proactive

(assuming a certain level of performance degradation, with no

input from the machinery itself, and servicing equipment on a

routine schedule whether service is actually needed or not).

Both scenarios are extremely wasteful. To human beings, it

often seems that machines fail suddenly, but in fact machines

usually go through a measurable process of degradation before

they fail. Today, that degradation is largely invisible to human

users, even though a great deal of technology has been

developed that could make such information visible. Many

sophisticated sensors and computerized components are

capable of delivering data about the machine’s status and

performance. The problem is that little or no practical use is

made of most of this data. We have smart devices, but we do not

have a continuous and seamless flow of information throughout
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entire processes. Sometimes this is because the available data

are not rendered in a useable form. More often, no

infrastructure exists for delivering the data over a network,

or for managing and analyzing the data even if the devices were

networked. When smart machines are networked and remotely

monitored, and when their data is modelled and continually

analyzed with sophisticated embedded systems, it is possible to

go beyond mere ‘‘predictive maintenance’’ to intelligent

‘‘prognostics’’. Intelligent prognostics is defined as a systema-

tic approach that can continuously track health degradation and

extrapolating temporal behaviour of health indicators to predict

risks of unacceptable behaviour over time as well as

pinpointing exactly which components of a machine are likely

to fail. Such continuous insight into present and future health of

machines and their components, as well as the information flow

infrastructure enable the move to e-maintenance based on

intelligent prognostics, where maintenance actions are syn-

chronized with the overall operation of the system as well as

with the necessary maintenance resources and spare parts. Such

synchronization of maintenance actions and information flow

infrastructure should enable autonomously triggering of

services and ordering of spare parts, yielding near-zero
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downtime system operation through proactive, cost-effective

maintenance that is the least intrusive on the normal function of

the system [1,2]. The purpose of this paper is to present an

overview of the methods that enable the above-described

paradigm of intelligent prognostics and e-maintenance.

The rest of this paper is organized as follows. Section 2

offers a brief review of the research in the area of condition-

based maintenance. Section 3 outlines more recent achieve-

ments in development of predictive condition-monitoring tools

and intelligent maintenance decision making based on the use

of those tools. Several examples of real-life implementation of

predictive monitoring and intelligent maintenance decision-

making tools are enclosed in Section 4. Finally, Section 5

summarizes conclusions of this work and outlines guidelines

for possible future work.

2. Condition-based maintenance

Traditional reliability prediction is made based on failure

time data; meanwhile, maintenance actions are initiated in

terms of a reliability index. Usually such preventive

maintenance schemes as block-replacement and age-replace-

ment are time-based without considering the current health

state of the product, and thus are inefficient and less valuable for

a customer whose individual asset is of the utmost concern.

The major role of degradation analysis is to investigate the

evolution of the physical characteristics, or performance

measures, of a product leading up to its failure. A maintenance

scheme, referred to as condition-based maintenance (CBM), is

developed by considering current degradation and its evolution.

CBM methods and practices have continued to improve over

recent decades. For example, a major manufacturer of elevators

for high-rise buildings continuously monitors the braking

systems, and acceleration and deceleration of elevators globally

to meet high safety requirements. The main idea of CBM is to

utilize the product degradation information extracted and

identified from on-line sensing techniques to minimize the

system downtime by balancing the risk of failure and

achievable profits. The decision making in CBM focuses on

predictive maintenance. To do so, many diagnostic tools and

methods have been developed with much success. Sensor

fusion techniques are also commonly emploted due to the

inherent benefits in taking advantage of mutual information

from multiple sensors [3–5]. For example, vibration signature

analysis and oil analysis, because of their excellent capacity for

describing machine performance, have been successfully

employed for prognostics for a long time [6,7]. Alternative

approaches in using time/stress, temperature, acoustic emis-

sions [8], and ultrasonic are widely employed as well. However,

a major breakthrough has not been made in the development of

prognostics since many methods have remained based on

traditional signal processing methods [9].

In the recent technical literatures, a large variety of

prognostic applications have been reported, and many of these

were more application specific rather than generic. For

instance, the development of neural networks has added new

dimensions to solving existing problems in conducting
prognostics of a centrifugal pump case [10]. A comparison

of the results using the signal identification technique showed

various merits of neural nets including the ability to handle

multivariate wear parameters in a much shorter time. A

helicopter transmission prognostic application was presented

by Parker et al. [11], whereby fault detection, isolation, and

estimation were conducted by a polynomial neural network. A

fuzzy logic-based neural network and decision tree were

applied to the prediction of paper web breakage in a paper mill

[12]. Yet another prognostic application presented an integrated

prognosis system using a dynamically linked ellipsoidal basis

function neural network coupled with an automated rule

extractor to develop a tree-structured rule set that closely

approximates the classification of the neural network [13]. That

method allowed assessment of trending from the nominal class

to each of the identified fault classes, which means quantitative

prognostics were built into the network functionality. Garga

et al. [14] introduced a hybrid reasoning method for

prognostics, which integrated explicit domain knowledge

and machinery data. In this approach, a feed-forward neural

network was trained using explicit domain knowledge to get a

parsimonious representation of the explicit domain knowledge.

Some research activities in the infrastructure of prognostics

have also been reported. From 1998 to 2000, the U.S. army

logistics integration agency funded a project entitled, ‘‘Prog-

nostics Framework’’ [15]. The project aimed at providing an

overall architecture to manage the information provided by the

individual prognostic techniques. This prognostics framework is

generic and scalable, with an open architecture and horizontal

technology, which is intended to integrate with embedded

diagnostics to provide ‘‘total health management’’ capability.

Generally speaking, current prognostic approaches can be

classified into three basic groups: model-based prognostics,

data-driven prognostics, and hybrid prognostics. An example

of a characteristic model-based prognostics application

includes data collected from model-based simulations under

normal and degraded conditions. Prognostic models are

constructed based on different random load conditions, or

modes. However, in the absence of a reliable or accurate system

model, another approach to determine the remaining useful life

is to monitor the trajectory of a developing fault and predict the

amount of time until the developing fault reaches a

predetermined level requiring action, which is the so called

data-driven prognostic method. The alpha–beta–gamma track-

ing filter and the Kalman filter, two well-known tracking and

prediction tools, have been applied to gearbox prognostics

[16,17]. Both filters have been investigated for their ability to

track and smooth features from gearbox vibration data. The

literature presented additional discussions on using Kalman

filters to track changes in features like vibration levels, mode

frequencies, or other waveform signature features, and how to

estimate the future hazard rate, probability of survival, and

remaining useful life [18,19]. An example of a hybrid method,

which fuses the model-based information and sensor-based

information and takes advantage of both model- and data-

driven methods, was proposed by Hansen et al. [20], by which a

more reliable and accurate prognostic result can be generated.
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Fig. 1. Infotronics structure of IM systems.
Prognostic information obtained through intelligence

embedded into the manufacturing process or equipment can

also be used to improve the manufacturing and maintenance

operations in order to increase process reliability and improve

product quality. For instance, the ability to increase the reliability

of manufacturing facilities using awareness of the deterioration

levels of manufacturing equipment has been demonstrated

through an example of improving robot reliability [21].

Moreover, a life cycle unit (LCU) [22] was proposed to collect

usage information about key product components, enabling one

to assess product reusability and facilitating reuse of products

that have significant remaining useful life.

In spite of the progress made, many fundamental issues still

remain:
� M
ost of the developed prognostics approaches are application

or equipment specific. A generic and scalable prognostic

methodology or toolbox does not exist;
� C
urrently, methods are generally focused on solving the

failure prediction problem. Tools for system performance

assessment and degradation prediction have not been well

addressed;
� F
eatures used for prognostics need to be further developed;
� M
any developed prediction algorithms have been demon-

strated only in a laboratory environment without industrial

validations.

To address these issues, a toolbox of algorithms for multi-

sensor performance assessment and prediction, named Watch-

dog AgentTM, has been developed at the Center for Intelligent

Maintenance Systems (IMS) which is a multi-campus NSF

Industry/University Cooperative Research Center between the

University of Cincinnati and the University of Michigan. These

tools enable one to quantitatively assess and predict perfor-

mance degradation levels of key product components [23–26],

thus offering the possibility of physically realizing closed-loop

product life cycle monitoring and management.
3. Development of predictive tools and intelligent

maintenance systems

Fig. 1 shows the system elements of ‘‘intelligent main-

tenance systems (IMS)’’. The key research elements of

intelligent maintenance systems consist of (1) transforming

data to information to knowledge and synchronizing decisions

with remote systems; (2) intelligent embedded prognostics

algorithms for performance degradation assessment and

prediction; (3) infotronics software and hardware platforms

that enable a product to think, link, reconfigure and sustain in a

networked and tether-free environment; (4) embedded product

services and life cycle information for closed-loop product

designs.

3.1. Smart prognostics algorithms (Watchdog AgentTM)

The Watchdog AgentTM bases its degradation assessment on

the readings from multiple sensors that measure critical

properties of the process, or machinery, that is being

considered. It is expected that the degradation process will

alter the sensor readings that are being fed into the Watchdog

AgentTM, and thus enable it to assess and quantify the

degradation through quantitatively describing the correspond-

ing change in sensor signatures. In addition, a model of the

process or piece of equipment that is being considered, or

specific knowledge available for the application can be used to

aid the degradation process description, provided that such a

model and/or such knowledge exists. The prognostic function

of the watchdog is realized through trending and statistical

modelling of the observed process performance signatures and/

or model parameters. This allows one to predict the future

behaviour of these patterns and thus forecast the behaviour of

the process, or piece of machinery that is being considered.

Furthermore, the Watchdog AgentTM also has the diagnostic

capabilities through memorizing the significant signature

patterns in order to recognize situations that have been
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Fig. 2. Tools utilized for feature extraction, performance assessment, condition diagnosis, and performance prediction.
observed in the past, or be aware of the situation that was never

observed before. Thus, the Watchdog AgentTM has elements of

intelligent behaviour that enable it to answer the questions:
� W
hen the observed process, or equipment, is going to fail or

degrade to the point when its performance becomes

unacceptable?
� W
hy the performance of the observed process, or equipment

is degrading, or, in other words, what is the cause of the

observed process or machinery degradation?

The answer to the first question enables the prognostic

Watchdog function and the answer to the second question

enables its diagnostic function. The prognostic and diagnostic

outputs of Watchdogs mounted on all the processes and

machinery of interest are fed into the decision support tool

(DST) that addresses the question: what is the most critical

object, or process in the system with respect to maintenance, or

repair?

The answer to this question is obtained through taking into

account the risks of taking, or not taking, a maintenance action at

a given time, and then optimizing the costs associated with the

maintenance operation if the decision to perform maintenance is

made, or the cost of downtime and repair, if the maintenance is

omitted and the process, or the machine fails.

In order to facilitate the use of the Watchdog AgentTM in a

wide variety of applications, with various requirements and

limitations regarding the character of signals, available

processing power, memory and storage capabilities, limited

space, power consumption, personal user’s preference, etc., the

performance assessment module of the Watchdog AgentTM has

been realized in the form of a modular, open architecture

toolbox. A toolbox that consists of different prognostics tools

has been developed for predicting the degradation or
performance loss on devices, processes, and systems. The

algorithms include neural network-based, time series-based,

wavelet-based and hybrid joint time-frequency methods, etc.

Open architecture of the toolbox allows one to easily add new

solutions to the performance assessment modules as well as to

easily interchange different tools, depending on the application

needs. Fig. 2 summarizes the tools used for feature extraction,

performance assessment, condition diagnosis, and performance

prediction.
� S
ensory processing and feature extraction module transforms

sensor signals into domains that are most the revealing in

terms of the product’s performance and extracts features most

relevant to describing the product’s performance. Time series

analysis [27] or frequency domain analysis [28] could be used

to process stationary signals (signals with time invariant

frequency content), while wavelet [29], or joint time-

frequency domains [30] could be used to describe non-

stationary signals (signals with time-varying frequency

content).
� T
he features are extracted from the domain into which

sensory processing module transforms sensory signals, using

expert knowledge about the application, or automatic feature

selection methods such as roots of the autoregressive time

series model, or time-frequency moments and singular value

decomposition.
� Q
uantitative health assessment module evaluates the overlap

between the most recently observed signatures and those

observed during normal product operation. This overlap is

expressed through the so-called confidence value (CV),

ranging between 0 and 1, with higher CVs signifying a high

overlap, and hence performance closer to normal. In case data

associated with some failure modes exists, most recent

performance signatures obtained through the signal proces-
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Fig. 3. Performance evaluation using confidence value (CV).
sing, feature extraction and sensor fusion modules can be

matched against signatures extracted from faulty behaviour

data.

Realization of the performance evaluation module

depends on the character of the application and extracted

performance signatures. If significant application expert

knowledge exists, simple but rapid performance assessment

based on the feature-level fused multi-sensor information can

be made using the relative number of activated cells in the

neural network, or using the logistic regression approach. For

open-control architecture products, the match between the

current and nominal control inputs and performance criteria

can also be utilized to assess the product’s performance. For

more sophisticated applications with intricate and compli-

cated signals and performance signatures, statistical pattern

recognition methods, or feature map-based approach are

employed. Over time, as new failure modes occur,

performance signatures related to each specific failure can

be collected and used to teach the Watchdog AgentTM to

recognize and diagnose that failure mode in the future. Thus,

the Watchdog AgentTM is can be seen as an intelligent device

that utilizes its experience and human supervisory inputs over

time to build its own expandable and adjustable world model.
� P
Fig. 4. Prognostics and performance forecasting.
erformance prediction module is aimed at extrapolating the

behaviour of process signatures over time and predicts their

behaviour in the future. Autoregressive moving average

(ARMA) [27] modelling and match matrix [38] methods are

used to forecast the performance behaviour. Fig. 4 shows the

concept of feature-based prognostics and diagnostics

methods explained in more detail in [37].

Performance assessment and prediction can be enhanced

through feature-level or decision-level sensor fusion, as defined

by the Joint Directors of Laboratories (JDL) standard of multi-

sensor data fusion [31], Chapter 2 [32]. Feature-level sensor

fusion is accomplished through concatenation of features

extracted from different sensors and joint consideration of the

concatenated feature vector in the performance assessment and

prediction modules. Decision-level sensor fusion is based on

separately assessing and predicting process performance from

individual sensor readings and then merging these individual

sensor inferences into a multi-sensor assessment and prediction

through some averaging technique.
Condition diagnosis module tells not only the level of

behavior degradation (the extent to which the newly arrived

signatures belong to the set of signatures describing the normal

system behavior), but also how close the system behavior is to

any of the previously observed faults (overlap between signatures

describing the most recent system behavior with those

characterizing each of the previously observed faults).This

matching allows the Watchdog Agent(R) to recognize and

forecast a specific faulty behavior, once a high match with the

failure associated signatures is assessed for the current process

signatures, or forecasted based on the current and past product’s

performance. Fig. 3 illustrates this signature matching process

for performance evaluation. Furthermore, this entire infrastruc-

ture for multi-sensor performance assessment and prediction

could be even further enhanced if Watchdog AgentTM are

embedded on identical products operating under similar

conditions could exchange information and thus assist each

other in building the world model. Furthermore, this commu-

nication can be used to benchmark the performance of ‘‘brother-

products’’ and thus rapidly and efficiently identify under-

performing units before they cause any serious damage and

losses. This paradigm of communication and benchmarking

between identical products operating in similar conditions is

referred to as the ‘‘peer-to-peer’’ (P2P) paradigm.

Fig. 5 illustrates the aforementioned Watchdog AgentTM

functionalities supported by the P2P communication and

benchmarking paradigm. A list of developed prognostics tools
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Fig. 5. Peer-to-peer (P2P) functionalities of the intelligent Watchdog AgentTM.
and their capabilities are summarized in [37]. Many of these

algorithms have been validated on industry testbeds. These

works can be seen in the publication list.

Fig. 6 shows the results of predicting the behaviour of

machining process spindle load signatures using ARMA

modelling techniques. Load sensor readings from a boring

machine spindle have been remotely collected and processed

into joint time-frequency (TF) distributions. Performance

related signatures were extracted from the TF distributions

using the TF moments and principal component analysis [26].
Fig. 6. ARMA prediction of features extracte
ARMA modelling techniques were then utilized to predict the

behaviour of the extracted principal components, as indicated

in Fig. 6.

4. Implementation examples

Several Watchdog Agents for on-line performance assess-

ment, as well as intelligent maintenance decision-making tools,

have already been developed and implemented as standalone

applications in a number of industrial and service facilities.
d from the spindle load sensor readings.
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Fig. 7. Bearing test rig.
Below is a list of a few examples to illustrate the developed

tools.

4.1. Example 1: roller bearing performance prediction

Most bearing diagnostics research involves studying the

defective bearings recovered from the field, where the bearings

exhibit mature faults, or from simulated or ‘‘seeded’’ damage.

Experiments using defective bearings are less likely to help

discover natural defect propagation in the early stages. In order to

truly reflect the real defect propagation processes, bearing run-to-

failure tests were performed under normal load conditions on a

specially designed test rig supported by an industrial partner.

More details about this work can be found in [33].

The bearing test rig hosts four test bearings on one shaft.

Shaft rotation speed was kept constant at 2000 rpm. A radial

load of 6000 lbs is added to the shaft and bearing by a spring

mechanism. A magnetic plug installed in the oil feedback pipe

collects debris from the oil as evidence of bearing degradation.

The test stops when the accumulated debris adhered to the

magnetic plug exceeds a certain level.

Four double row bearings were installed on one shaft as

shown in Fig. 7. A high-sensitivity accelerometer was installed

on each bearing housing. Four thermocouples were attached to

the outer race of each bearing to record bearing temperature for

monitoring the lubrication purposes. Several sets of tests ending

with various failure modes were carried out. The time domain

feature shows that most of the bearing fatigue time is consumed

during the period of material accumulative damage, while the

period of crack propagation and development is relatively short.
Fig. 8. The vibration signal waveform of a faulty bearing.
This means that if the traditional threshold-based condition-

monitoring approach is used, the response time available for the

maintenance crew to respond prior to catastrophic failure after a

defect is detected in such bearings, is very short. A prognostic

approach that can detect the defect at the early stage is

demanded so that enough buffer time is available for

maintenance and logistical scheduling.

Fig. 8 presents the vibration waveform collected from

bearing 4 at the last stage of the bearing test. The signal exhibits

strong impulse periodicity because of the impacts generated by

a mature outer race defect. However, when examining the

historical data and observing the vibration signal 3 days before

the bearing failed, there is no sign of periodic impulse as shown

in Fig. 9(a). The periodic impulse feature is totally masked by

the noise.

An adaptive wavelet filter is designed to de-noise the raw

signal and increase the probability of degradation detection.
Fig. 9. The vibration waveform with early stage defect: (a) raw signal (b) de-

noised signal using the wavelet filter.
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Fig. 10. Hazard rate prediction of bearing 3 in test 1.

Table 1

Estimates of expected remaining useful life — Test 1, bearing 3

Timea 26 29 31

Estimated expected remaining

useful lifea

3.5549 3.3965 1.5295

True remaining useful lifea 6.5278 3.5278 1.5278

Errora 2.9729 0.1313 0.0017

a In days.
The adaptive wavelet filter is yielded in two steps. At first, the

optimal wavelet shape factor is found by the minimal entropy

method, then the optimal scale is identified by maximizing the

signal periodicity. Applying the designed wavelet filter to the

noisy raw signal, the de-noised signal can be obtained as shown

in Fig. 9(b). The periodic impulse feature is, therefore,

revealed, which is strong evidence of bearing outer race

degradation. The wavelet filter-based de-noising method

successfully enhanced the signal feature and provided potent

evidence for prognostic decision-making.

An important issue in prognostic technology is to estimate the

risk of failure and the remaining useful life of a component given

the component’s age and its past and current operating

conditions. In numerous cases, failures can be attributed to

many correlated degradation processes, which could be reflected

by multiple degradation features extracted from sensor signals.

These features are the major source of information regarding the

health of the component under monitoring; however, the failure

boundary is hard to define using these features. In reality, the

same feature vector could be attributed to totally different

combinations of the underlying degradation processes and their

severity levels. In other words, the failure boundary is grey by

monitoring the degradation features. There is only a probabilistic

relationship between the component failure and certain levels of

degradation features. A typical example can be found during

bearing operation. Two bearings of the same type could fail at

different levels of RMS and Kurtosis of vibration signal. To

capture the probabilistic relationship between the multiple

degradation features and the component failure, as well as predict

the risk of failure and the remaining useful life, IMS has

developed a proportional hazards (PH) approach [34] based on

the PH model proposed by [39]. The PH model involving

multiple degradation features is given by

lðt; ZÞ ¼ l0ðtÞexpðb0ZÞ (1)

where lðt; ZÞ is the hazard rate of the component given the

current age t and degradation feature vector Z, l0(t) called the
baseline hazard rate function, and b is the model parameter

vector. This formulation relates the working age and multiple

degradation feature to the hazard rate of the component. To

estimate the parameters, a maximum probability approach

could be utilized using offline data, including the degradation

features over time of many components and their failure times.

Afterwards, the established model can be used for predicting

the risk of failure in regards to the component by plugging in the

working age and the degradation features extracted from the on-

line sensor signals. In addition, the remaining useful life

L(tcurrent) given the current working age and the history of

degradation features can be estimated by

LðtcurrentÞ �
Z 1

tcurrent

exp

�
�
Z t

tcurrent

lðv; ẑðvÞÞdv

�
dt (2)

where ẑðvÞ is the predicted feature vector.

Consider the vibration data obtained from the signal

enhanced using the Morlet-wavelet filtering described above.

To facilitate on-line implementation, root-mean-square (RMS)

and Kurtosis are calculated and used as degradation features.

Fig. 10 shows the predicted hazard rate over time based on these

degradation features. This value can be utilized to trigger

maintenance when the risk level crosses a predetermined

threshold level. Table 1 provides the remaining useful life

predictions given the current bearing age and the feature

observations. The predictions are in accordance with the actual

life of the studied bearing (32.5278 days) with minor prediction

errors when the degradation progresses.

4.2. Example 2: industrial network fault detection

A large number of industrial network failures are attributed

to loose or degrading terminating resistors. This data set is from

an experiment done at the University of Michigan using a

controller area network (CAN) test set-up from an industrial

sponsor. Normal signals were acquired using a properly

functioning terminating resistor and then faulty signals were

created by removing one terminating resistor from the network.

The CAN signal is a logical differential signal, with a high and

low voltage component (Fig. 11). One way to detect a faulty

resistor in a network that emits this kind of signal is to measure

the overshoot and the signal-to-noise ratio of the logical 0’s and

1’s in the signal. Since the changes happen very quickly, the

signal must be sampled at a very high sampling rate. Here we

used a sampling rate of 20 MHz.

The overshoot is the percentage at which the signal goes

beyond the steady state value. The signal-to-noise ratio (SNR)
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Fig. 11. Time series data for CAN Network.

Fig. 12. Categorized normal and faulty signals.
is a measure of signal strength to background noise, usually

given in decibels. It was found that the overshoot value tended

to increase while the SNR decreased whenever system

resistance increased; for example, a terminating resistor is

removed. Fig. 12 shows how normal and faulty data can be

categorized by taking an average of the overshoot and signal-to-

noise ratio between the CAN high and CAN low signals.

For manipulation of the network data, we do not use the

frequency-based methods for feature extraction, instead the

overshoot and signal-to-noise ratio are used as expert extracted

features. These expert extracted features are taken from 10

normal and 10 faulty signals for training. Using these signals, it

is possible to use logistic regression to classify the 200

measured signals as normal or faulty. The data cannot be

successfully classified using statistical pattern recognition.

4.3. Example 3: maintenance scheduling using predictive

information about equipment condition

Discrete-event simulation and heuristic optimization can be

utilized for strategic scheduling of maintenance operations that

are the least intrusive on the normal production operation in a

manufacturing system, as suggested in [35]. In this paper, the

cost effectiveness of many maintenance schedules were

evaluated based on predicted probabilities of equipment

failures over time, obtained from predictive condition-based

algorithms, such as those described in [37]. The impact of

equipment failures and maintenance operations was assessed

through discrete-event simulations and a GA-based search

algorithm was suggested to search for maintenance schedules

with highest corresponding average cost-benefits. The follow-

ing is a short description of an example given in [35] where
Fig. 13. Manufacturing system used for evalua
advantages of the newly proposed maintenance scheduling

method over more traditional methods are demonstrated. This

method is also being used for maintenance decision-evaluation

and -making by a major automotive manufacturer.

Three types of maintenance strategies have been simulated

and compared with the maintenance schedule obtained using

the method from [35], where the predictive information about

equipment condition-based is used to maximize average cost-

benefits of the maintenance using discrete-event simulations

and a GA-based search. The four maintenance strategies

considered in this example were:
� C
tio
orrective maintenance strategy, which uses the simple first-

come–first-serve scheme in which the maintenance is

performed whenever there is a machine failure and there is

a maintenance person available. If any of the two conditions

is not satisfied, the machine will remain in a failed mode, not

producing anything. This maintenance strategy will be

referred to as ‘Strategy A’;
� S
cheduled maintenance strategy, in which maintenance is

performed in regular time intervals. This strategy will be

referred to as ‘Strategy B’;
� C
ondition-based maintenance, in which maintenance crews

possess information about the current condition of the

equipment. Thus, instead of waiting for machine failure, it is

assumed that user-defined thresholds are set on the

degradation level of any given machine to trigger main-

tenance operations. It is different from purely reactive

maintenance in the sense that condition-based information

enables a portion of the maintenance action to be done as

scheduled maintenance-before equipment failure actually

happens. This strategy will be referred to as ‘Strategy C’;
n and benchmarking of strategies A–D.
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Table 2

Parameters used in the testing system

Station name Cycle time (s) Life (part) Variation of life (part) MTTR (h) Variation of MTTR (h)

Milling A 36 10000 100 1.0 0.2

Turning A1 72 7000 50 1.0 0.2

Turning A2 72 7000 50 1.0 0.2

Drilling A 36 15000 150 2.0 0.2

Milling B1 48 15000 70 1.2 0.2

Milling B2 48 15000 70 1.2 0.2

Turning B1 48 10000 20 2.0 0.2

Turning B2 48 10000 20 2.0 0.2

Drilling B 24 15000 100 1.0 0.2

Inspection 14.4 20000 200 0.5 0.2
� P
redictive maintenance strategy based on the maintenance

scheduling methods described in Sections 2 and 3 of this

paper, using the current and predicted equipment conditions

and taking into account both production benefits and

maintenance expenses. This strategy will be referred to as

‘Strategy D’.

For all four strategies, it was assumed that any unscheduled

equipment failure in the manufacturing systems will be

addressed as soon as a maintenance team is available.

A simple production line consisting of 10 machines, as

shown in Fig. 13, is used for simulation and benchmarking of

the four maintenance policies described above. For each

machine a distribution describing failure events on that

machine over time, and a distribution describing the

corresponding repair events, is used. Parameters of these

distributions are listed in Table 2. Moreover, it is assumed that

information about risks of unacceptable behaviour of each

machine over time is available, which can be for example

obtained using performance prediction methods reported in

[37]. It is also assumed that only one maintenance person is

available.

The cost-effects of any maintenance schedule were assessed

as

P�
X

i

½IPRsystem;i � ðtiþ1 � tiÞ� � ðCs �Ms þ Cu �MuÞ (3)

where the following notation is used: P is the profit per product,

IPRsystem,i the system IPR for system state i, ti the starting

moment of system state, Ms the total scheduled maintenance

time spent on maintaining machines, Cs the corresponding unit

cost for Ms, Mu the total unscheduled maintenance time, and Cu

is the corresponding unit penalty cost for Mu.
Fig. 14. Case 3 test system with one pair of mac
Simulations have been conducted for four different cases,

which were designed to evaluate the effects of different

components in the cost function (1).

In Case 1, the basic system is analyzed with cost factors set

as P = $ 10 for each product made, Cs = $ 100 for each man-

hour spent on scheduled maintenance, Cu = $ 1000 for each

man-hour spent on unscheduled maintenance. Hence, the cost

factors used in the simulation were: P = $ 10, Cs = $ 100 and

Cu = $ 1000.

In Case 2, the following set of cost factors was used: P = $

10, Cs = $ 1000 and Cu = $ 1000. The cost factors are chosen in

such way that the cost of scheduled and unscheduled

maintenance is the same, which means that the penalty for

unscheduled maintenance is essentially removed. Under such

circumstances, the benefits of predicting equipment failures

will not exist any more since cost effects of performing

maintenance before or after equipment will be the same. Thus,

this case indicates how the ratio between the cost factors Cs and

Cu would influence the cost-benefits of utilizing the predictive

information about equipment condition.

In Case 3, the same set of parameters as in Case 1 is used,

except that one pair of machines in the basic system is merged

into a single machine, thus forming a new bottleneck in the

system, as shown in Fig. 14. In normal operating conditions, the

line performs exactly the same as the original line. However,

the robustness of the system considered in Case 3 is reduced

because now the failure of the merged machine will cause a

larger portion of the system to stop. As the criticality of one of

the machines in the production system is increased, it is

expected that the prediction of equipment behaviour will

become more beneficial in a case where the failure of the

merged station could cause downtime of the entire system. In

essence, this case will point out how the structure of the system
hines merged into the ‘‘Turning B’’ machine.



J. Lee et al. / Computers in Industry 57 (2006) 476–489486

Table 3

Comparison of maintenance strategies A–D in Case 1

Type Scheduled maint. (H) Unscheduled maint. (H) Produced part Effective gain Improvement

(%)
Mean S.D. Mean S.D. Mean S.D. Mean ($) S.D. ($)

Strategy A 0.00 0.00 7.33 1.00 3016.16 267.56 22833 3429

Strategy B 2.68 1.12 6.01 1.34 2848.88 165.25 22214 2280 �2.71

Strategy C 6.76 2.35 2.78 1.63 2880.58 240.07 25346 3069 11.01

Strategy D 5.58 1.04 2.81 1.24 3315.39 144.30 29787 2285 30.46
affects the cost-benefits of utilizing the predictive information

about the equipment’s condition.

In Case 4, the same set of parameters as in Case 1 are used,

except that unscheduled maintenance takes 50% more time to

finish than the same maintenance performed according to the

schedule, meaning that more maintenance time is needed for

unscheduled events. This Case is constructed in order to

demonstrate the effects of downtime on the system-level

benefits of various maintenance schedules. It is expected that

prediction of equipment performance and elimination of

unscheduled maintenance events through maintenance sche-

dules provided by the newly proposed Strategy D will yield

more prominent system-level benefits in this case.

From the results of the first test case given in Table 3, it is

noticeable that an improvement in the overall cost-benefits

can be achieved using the GA optimized maintenance

scheduling ‘Strategy D’. With ‘Strategy B’, some main-

tenance is done as scheduled work to prevent machine

failures. However, the fixed length of the time interval

between two successive maintenance tasks on one machine

does not always match the actual machine life. Thus,

maintenance is either done too early, when there is still

remaining useful life in the equipment, or too late, after

failure already occurs and maintenance is performed as an

unscheduled task. Thus, the corresponding cost effects of

maintenance are characterized by high-cost maintenance and

reduced overall gain expressed by Eq. (1). In ‘Strategy C’,

more scheduled maintenance occurs, due to the direct use of

machine conditions as indicators of imminent machine

failure. Shorter and more flexible maintenance intervals on

each machine increase the overall maintenance time, but

results in fewer unscheduled maintenance events. Thus, it

achieves a higher profit than the purely reactive ‘Strategy A’

or ‘Strategy B’ characterized by fixed schedules. As for

‘Strategy D’, the corresponding increase of productivity is

even bigger. Even though the overall maintenance time and
Table 4

Comparison of maintenance strategies A–D in Case 2

Type Scheduled maint. (H) Unscheduled maint. (H) P

Mean S.D. Mean S.D. M

Strategy A 0.00 0.00 7.28 0.78 3

Strategy B 2.75 1.25 5.50 1.31 2

Strategy C 6.99 2.67 2.85 1.97 2

Strategy D 1.27 1.10 6.19 1.26 3

P = $ 10, cm = $ 1000, Ci = $ 1000.
unscheduled maintenance time both increased, the schedule

of the maintenance is arranged in such a way that the system

productivity grew, which proved to be more than enough to

compensate for the increased maintenance cost.

In Case 2, the cost factors are changed so that the costs for

scheduled maintenance and unscheduled maintenance are the

same. As can be seen in Table 4, both ‘Strategy B’ and ‘Strategy

C’ achieved lower system gain than the purely reactive

‘Strategy A’. Removing the cost penalty on unscheduled

maintenance resulted in no benefits in performing any

maintenance action before machine breakdowns actually

happen. Then, the cost-benefits associated with any main-

tenance schedule are determined only by the system

productivity and overall maintenance time. The increased

maintenance activities in both ‘Strategy B’ and ‘Strategy C’

reduce the system productivity relative to the one correspond-

ing to ‘Strategy A’, thus causing the corresponding profits to be

decreased. In this extreme case, the benefits of using ‘Strategy

D’ are non-existent since there is no benefit in performing

scheduled rather than unscheduled maintenance.

In Case 3, two identical machines working in parallel in the

original configuration (identified as Turnings B1 and B2 in

Fig. 8), are merged into one machine (identified as Turning B in

Fig. 9). Obviously, the Turning B machine from Case 3 is more

critical in the new system than the original two machines were

in the original system from Case 1 because when it fails, a

larger portion of the production system is down, and the

production losses are higher (essentially, machine Turning B is

a local bottleneck in the system considered in Case 3). The

maintenance schedule offered by the newly proposed ‘Strategy

D’ calls for timely maintenance based on the predicted

equipment conditions, while avoiding excessive usage of

maintenance resources by eliminating schedules that call for

excessive maintenance, and thus resulting in low system-level

cost-benefits as defined by Eq. (1) that do not propagate through

the GA-based optimization procedure. Thus, the overall profit it
roduced part Effective gain Improvement

(%)
ean S.D. Mean (%) S.D. (%)

135.24 185.35 24067 2255

885.03 164.26 20595 1861 �14.43

896.69 226.90 19125 3671 �20.53

221.34 216.13 24745 3018 2.82
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Table 5

Comparison of maintenance strategies A–D in Case 3

Type Scheduled maint. (H) Unscheduled maint. (H) Produced part Effective gain Improvement

(%)
Mean S.D. Mean S.D. Mean S.D. Mean ($) S.D. ($)

Strategy A 0.00 0.00 6.42 1.20 1670.95 171.26 10288 2582

Strategy B 0.85 0.85 5.40 1.04 1684.30 99.00 11361 1500 10.43

Strategy C 5.53 2.27 2.11 1.66 1607.05 163.96 13407 2439 30.32

Strategy D 6.68 0.77 2.43 1.11 1751.04 92.53 14410 1923 40.07

Table 6

Comparison of maintenance strategies A–D in Case 1

Type Scheduled maint. (H) Unscheduled maint. (H) Produced part Effective gain Improvement

(%)
Mean S.D. Mean S.D. Mean S.D. Mean ($) S.D. ($)

Strategy A 0.00 0.00 10.90 1.07 2634.86 350.01 15451 4006

Strategy B 1.86 1.11 9.05 1.87 2644.84 216.68 17212 3416 11.39

Strategy C 6.44 2.42 4.21 1.83 2797.37 311.63 23118 3579 49.61

Strategy D 5.52 1.32 4.31 2.18 3099.46 248.77 26135 4278 69.14

Fig. 15. Relative profit chart between maintenance strategies for the four test cases.
made exceeded all other strategies, as illustrated in Table 5.

Furthermore, due to the existence of the more critical Turning B

machine, the benefits of avoiding the costly downtime

increased even more, which resulted in an increase in

system-level cost-benefits associated with the maintenance

‘Strategy D’, as compared to the corresponding benefits

observed in Case 1.

In Case 4, the increased time needed for unscheduled tasks

implied that unscheduled maintenance tasks would involve

more machine downtime and thus effectively increases the

detrimental costs associated with unscheduled maintenance

that takes place after equipment failures occur. The main-

tenance schedule offered by ‘Strategy D’ showed the ability of

the newly proposed maintenance scheduling method to avoid

unscheduled downtime and thus achieve high system-level

cost-benefits, as defined by Eq. (1). Furthermore, since the

impact of unscheduled downtime was increased in this case, the

cost-benefits of utilizing the maintenance schedule offered by

the newly proposed scheduling ‘Strategy D’ improved even

more dramatically compared to the improvement observed in

Case 1, as can be seen in Table 6 (the cost-benefits increased by

as much as 69% over the corrective ‘Strategy A’, while in Case

1 the corresponding improvement was 30.5%).
Relative effects of the four maintenance strategies for the

four test cases are shown in Fig. 15. In each Case, the cost-

benefits for corrective ‘Strategy A’ are set to 100%. One can

conclude from these results that overall production profits, due

to lower maintenance costs, can be increased through the

implementation of this proposed method. Furthermore, the

more critical the unscheduled system downtime and main-

tenance are, the higher the benefits associated with utilizing this

newly proposed method will be.

5. Conclusions and future work

The Watchdog AgentTM is a tool for multi-sensor assessment

and prediction of a machine’s or process’s performance. This

tool can be utilized to realize predictive condition-based

maintenance as well as to identify the components that possess

significant remaining useful life that could be efficiently and

cost-effectively disassembled and reused. A wide variety uses

for the Watchdog AgentTM have been devised to address many

applications of a different nature, with different levels of

complexity and criticality. Even though preliminary results for

autoregressive moving average (ARMA) modelling-based

behaviour prognostics have already been obtained, perfor-
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mance forecasting will be more thoroughly investigated in

future work (knowing ‘‘when something is going to happen’’).

Also, a link should be established with a decision-making

module which will enable optimal maintenance actions to be

carried out in an even timelier manner. This link will

compliment the Watchdog Agent’sTM many functions and

facilitate the OSA-CBM [36] standard topology for scalable

applications. Finally, an embedded infotronics agent is needed

to assess and predict product performance and, based on that

prediction, enable the assessment of the product’s reusability, as

well as its need for proactive maintenance. The research

challenge will be accomplishing this level of sophisticated

performance evaluation and prediction capabilities under the

severe power consumption, processing power and data storage

limitations imposed by embedding. Successful realization of

the embedded agent will have a profound impact on near-zero

downtime performance of machines and manufacturing

systems.
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