
Open Controller Architecture - Past, Present and Future

Gunter Pritschow (Co-ordinator), Yusuf Altintas, Francesco Jovane, Yoram Koren,
Mamoru Mitsuishi, Shozo Takata, Hendrik van Brussel, Manfred Weck, Kazuo Yamazaki

Abstract
Open Control Systems are the key enabler for the realization of modular and re-configurable
manufacturing systems. The large number of special purpose machines and the high level of automation
have led to an increasing importance of open control systems based on vendor neutral standards. This
paper gives an overview on the past, present and future of Open Controller Architecture. After reflecting
onthe different criteria, categories and characteristics of open controllers in general, the CNC products in
the market are evaluated and an overview on the world-wide research activities in Europe, North America
and Japan is given. Subsequently the efforts to harmonize the different results are described in order to
establish a common world-wide standard in the future. Due to the “mix-and-match’’ nature of open
controllers concentrated attention must be paid to testing mechanisms in the form of conformance and
interoperability tests.

Keywords: Open architecture control, CNC, Machine tool

1 INTRODUCTION
Open Architecture Control (OAC) is a well known term in
the field of machine control. Since the early nineties
several initiatives world-wide have worked on concepts
for enabling control vendors, machine tool builders and
end-users to benefit more from flexible and agile
production facilities. The main aim was the easy
implementation and integration of customer-specific
controls by means of open interfaces and configuration
met hods in a vendor-neu t ral , standardized environment

The availability and broad acceptance of such systems
result in reduced costs and increased flexibility. Software
can be reused and user-specific algorithms or
applications can be integrated. Users can design their
controls according to a given configuration. This trend
was forced both by the increasing number of special
purpose machines with a high level of automation and
the increasing development costs for software (Figure 1).

[131[191.

according to new market requirements. Modern CNC
approaches, which comprise extensive functionality to
achieve a high quality and flexibility of machining results
combined with a reduced processing time, favor PC-
based solutions with a homogenous, standardized
environment (Figure 2). The structure is software-
oriented and configurable due to defined interfaces and
software platforms. Open control interfaces are
necessary for continuously integrating new advanced
functionality into control systems and are important for
creating re-configurable manufacturing units [17].
Unbundling hardware and software allows profiting from
the short innovation cycles of the semiconductor industry
and information technology. With the possibility for
reusing software components, the performance of the
overall system increases simply by upgrading the
hardware platform.

Figure 2: PC-based, software-oriented Control Systems
There are a lot of benefits for suppliers and users of
open control systems (Figure 3) [7]. CNC designers and
academics benefit from a high degree of openness
covering also the internal interfaces of the CNC. For
CNC users the external openness is much more
important. It provides the methods and utilities for

Figure 1: CNC Hardware and software -Actual trend integrating user-specific applications into existing
In the past the CNC market was dominated by controls and for adapting to user-specific requirements,
heterogeneous, device-oriented systems with proprietary e.g. adaptable user interfaces or collection of machine
hardware and software components. The tight coupling and production data. The external openness is mainly
of application software, system software and hardware based on the internal openness but has functional or
led to very complex and inflexible systems. Great efforts performance I i mi ta t io n s .
were made to maintain and further develop the products

2.2 Hardware and software structure of control

Figure 5 shows different variants for the hardware
structures of control systems. Variant a) shows an
analog drives interface with position controller in the
control system core. Each module of this structure uses
its own processor which leads to a large variety of
vendor-specific hardware. Combining modules leads to a
significant reduction of the number of processors.
Variant b) shows intelligent digital drives with integrated
control functionality, which result from higher capacity,
miniaturization and higher performance of the
processors. Variant c) shows a PC-based single
processor solution with a real-time extension of the
operating system. All control-functions run as software
tasks in the PC-based real-time environment.

systems

Figure 3: Benefits of using Open Control Systems

2 STATE OF THE ART

2.1 Control Systems and their interfaces
Controls are highly sophisticated systems due to very
strict requirements regarding real-time and reliability. For
controlling the complexity of these systems hardware
and software interfaces are an essential means. The
interfaces of control systems can be divided into two
groups -external and internal interfaces (Figure 4).

External Interfaces
These interfaces connect the control system to superior
units, to subordinate units and to the user. They can be
divided into programming interfaces and communication
interfaces. NC and PLC programming interfaces are
harmonized by national or international standards, such
as RS-274, DIN 66025 or IEC 61131-3. Communication
interfaces are also strongly influenced by standards.
Fieldbus systems like SERCOS, Profibus or DeviceNet
are used as the interface to drives and 110s. LAN (Local
Area Network) networks mainly based on Ethernet and
TCPllP do reflect the interfaces to superior svstems.

Figure 4: External and internal interfaces of control
systems

Internal Interfaces
Internal interfaces are used for interaction and data-
exchange between components that build up the control-
system core. An important criterion in this area is the
support of real-time mechanisms.
To achieve a re-configurable and adaptable control the
internal architecture of the control system is based on a
platform concept. The main aims are to hide the
hardware-specific details from the software components
and to establish a defined but flexible way of
communication between the software components. An
application programming interface (API) ensures these
requirements. The whole functionality of a control system
is subdivided into several encapsulated, modular
software components interacting via the defined API.

Figure 5: Hardware and software structure
variants of CNCs

2.3 Market overview
The controls available in the market provide different
levels of openness according to the criteria shown in
Figure 6. An important criterion is the use of a
standardized corn pu t i ng platform (i .e . hardware,
operating system and middleware) as an environment to
execute the HMI and CNC software. Besides this, the
connectivity of the CNC to upper and lower factory levels
must be guaranteed. Application Programming
Interfaces (API) are used to integrate third party software
in the CNC products. Although most of today’s controls
offer openness concerning the o perator-related control
functions (Human-Machine Interface, HMI) only few
controls allow users to modify their low-level control
algorithms to influence the machine-related control
functions.

Figure 6: Criteria of Open Control Systems
Figure 7 gives an overview of the characteristics of
today’s control systems regarding the degree of
openness.

Criteria I Characteristics I Example I
Hardware Standard hardware with a PC-based I standard bus system I control

Operating Standard operating VxWorks,
system system wlo real-time Windows

DCOM,
wlo real-time CORBA

Factory
network

Drive network Standard physical media SERCOS I + communication protocol I interface

110 network Standard physical media Profibus,
+ communication protocol DeviceNet

NClRC Standard NC DIN 66025,

Standard PLC IEC 61131-3

IDDE9OPC I HMI software Standard application
integration I programming interface

CNC software Standard application Compile
integration programming interface Cycles I

Figure 7: Characteristics of Open Control Systems

Although many control systems provide open interfaces
for software integration (e.g. OPC) there is still no
common definition of data which is passed back and
forth via the programming interface. Therefore, the
control systems available on the market today do not
implicitly support “plug-and-play” features. To improve
this situation, the fieldbus systems can serve as a role
model (see Figure 8). The variety of different fieldbus
systems has led to the broad consensus that
harmonizing the a p plication-orien ted interfaces is
desirable in order to hide the plurality and the complexity
of the systems from the user. Most fieldbus
organizations are already using so-called device profiles
in order to support the interchangeability of the devices
of different vendors.

For example, the SERCOS interface standard
(IEC61491) for the cyclic and deterministic
communication between CNC and drives has defined the
semantics for approx. 400 parameters describing drive
and control functions which are used by the devices of
different vendors.

3

3.1 Definitions
The “Technical Committee of Open Systems” of IEEE
defines an open system as follows: “An open system
provides capabilities that enable properly implemented
applications to run on a variety of platforms from multiple
vendors, interoperate with other system applications and
present a consistent style of interaction with the user”
(IEEE 1003.0).
To estimate the openness of a controller the following
criteria can be applied (Figure 9):
0 Porfabibfy. Application modules (AM) can be used

on different platforms without any changes, while
maintaining their capabilities.

0 €xfendibi/ify. A varying number of AM can run on a
platform without any conflicts.

0 /nferoperabi/ify. AM work together in a consistent
manner and can interchange data in a defined way.

0 Sca/abi/ify. Depending on the requirements of the
user, functionality of the AM and performance and
size of the hardware can be adapted.

DEFINITIONS AND CATEGORIES OF OPENNESS

Figure 9: Criteria of Open Control Systems

Figure 8: Overview on commercial CNC systems

To fulfill the requirements of the IEEE-definition and
these criteria of openness, an open control system must
be:
0 vendor neutral. This guarantees independence of

single proprietary interests.
0 consensus-driven. It is controlled by a group of

vendors and users (usually in the form of a user
group or an interests group).
standards-based. This ensures a wide distribution in
the form of standards (nationallinternational
standards or de-facto standards).

freely available. It is free of charge to any interested

0

0

party.

3.2 Categories of Open Control Systems
If we speak of openness in control systems, the following
categories can be identified (Figure 10):
0 Open HMl: The openness is restricted to the non-

real-time part of the control system. Adaptations can
be made in user oriented applications.

Kernel with restricted openness: The control kernel
has a fixed topology, but offers interfaces to insert
user-specific filters even for real-time functions.
Open Control System: The topology of the control
kernel depends on the process. It offers
interchangeability, scalability, portability and
interoperability.

0

0

Open control systems that are available today mostly
offer the possibility for modifications in the non-real-time
part in a fixed software topology. They lack the
necessary flexibility and are not based on vendor-neutral
standards.

Figure 10: Levels of openness for control systems

3.3 Requirements
A vendor-neutral open control system can only be
realized if the control functionality is subdivided in
functional units and if well-defined interfaces between
these units are specified (Figure 11). Therefore
modularity can be identified as the key for an open
system architecture. In determining the module
complexity there is an obvious trade-off between the
degree of openness and the cost of integration [6].
Smaller modules provide a higher level of openness and
more options, but increase the complexity and
integration costs. Furthermore such a low level of
granularity can lead to much higher demands for
resources and it may even deteriorate the real-time
performance of the overall system.

Figure 11 : Decomposition of control functionality
Combining modules in the manner of “mix-and-match’’
requires a comprehensive set of standard Application
Program mi ng I nterfaces (AP I s) . For vendor-neu tral open
control systems the interfaces need to be standardized
and broadly accepted. Due to the complexity of such
modular systems the definition of a system architecture
is recommendable and helpful. This leads to the
introduction of so-called system platforms (Figure 12).
These platforms encapsulate the specifics of a
computing system by absorbing the characteristics of
hardware, operating system and communication. The
availability of such middleware systems facilitates the
easy porting of application software and also the
interoperability of application modules even in distributed
heterogeneous environments.

Figure 12: Infrastructure for open modular control
systems

Due to the possibility to “mix-and-match’’ modules via
standardized interfaces the quality of the overall system
is determined by the degree of the interoperability
between the single modules (see Section 5).

4

4.1 Major international activities

OSEC (Japan)
The OSE (Open System Environment for Manufacturing)
consortium was established in December 1994. Three
project phases were carried out until March 1999
[1][2][3]. The OSEC Architecture was intended to provide
end users, machine makers, control vendors, software
vendors, system integrators, etc. a standard platform for
industrial machine controllers, with which they can add
their own unique values to the industrial machines, and
hence promote the technical and commercial
development of the industrial machines. The OSEC API
is defined in the form of an interface protocol, which is
used to exchange messages among controller software
components representing the functionality and the real-
time cycle. Each functional block can be encapsulated
as an object so it is not necessary to deal with how a
functional block processes messages to it at architecture
level (Figure 13). Although the structure of functional
blocks can be defined uniquely by the OSEC
architecture from a logical point of view, the system is
neither determined nor limited at its implementation
phase because there are so many options for
implementations. These options may include system
contrivances such as device driver, interprocess
communication, installation mechanisms such as static
library and DLL, hardware factors like selection of

SYSTEMS ON THE WAY TO THE MARKET

controller card, and implementations of software
modules added for execution control andlor monitoring
of various software. In other words, the implementation
model to realize the architecture model is not limited to a
particular model. In this way, it is assured to incorporate
various ideas in the implementation model depending on
the system size or its hardware implementation andlor
utilization.

Figure 13: OSEC Architecture

JOP (Japan)
In parallel to the OSE consortium activities, MSTC
formed the Open-Controller Technical Committee (OC-
TC) from 1996 to 2000, under the umbrella of JOP
(Japanese Open Promotion Group). The objectives of
OC-TC were to provide the opportunities for various
companies to discuss and work together on the
standardization of open controller technologies. The OC-
TC was also expected to act as liaison between
domestic and international activities in this field. OC-TC
was participated by approximately 50 members, which
included major Japanese controller vendors, machine
tool builders, integrators, users, and academics. Some of
the members represented the other groups concerning
open controllers such as the OSE consortium and the FA
In t ranet Pro mot ion Group .
One of the working groups was engaged in developing a
standard API for interfacing between NC and PC-based
HMI. It should be also effective for the communication
between NC and an upper level management controller.
The work was carried out based on the proposals from
the major controller vendors and that from the OSE
consortium. The developed specifications were named
PAPI and released July, 1999 [4][5]. PAPI was approved
as a JIS (Japan Industrial Standard) technical report and
published in October, 2000. To demonstrate the
effectiveness of the specifications developed by OC-TC,
in Nagoya in October 1999, two CNCs manufactured by
different vendors were connected to a Windows NT
machine in which the same HMI systems developed by
the University of Tokyo were implemented (Figure 14).
Since any specific controller architecture is not assumed,
PAPI can be implemented in various types of existing
CNC systems, such as PC + proprietary NC, PC + NC
board, and Software NC on PC + 110 board. The HMI
system communicates with the CNCs via PAPI which is
a function-oriented software library in the programming
language C. The PAPI interface is neutralizing the
vendor-specific interface by mapping the PAPI calls to
the vendor-specific API and protocol.

Figure 14: Demonstration system at Mechatro-tech
Japan in 1999

OMAC (USA)
The Open Modular Architecture Controllers (OMAC)
Users Group is an industry forum to advance the state of
controller technology [lo]. An effort was undertaken
within OMAC to define API specification for eventual
submittal to an established standards body.
The OMAC API adopted a component-based approach
to achieve plug-and-play modularization, using interface
classes to specify the API [I l l . For distributed
communication, component-based technology uses
proxy agents to handle method invocations that cross
process boundaries. OMAC API contains different “sizes”
and “types” of reusable plug-and-play components -
component, module, and task - each with a unique
Finite State Machine (FSM) model so that component
collaboration is performed in a known manner. The term
component applies to reusable pieces of software that
serves as a building block within an application while the
term module refers to a container of components. Tasks
are components used to encapsulate programmable
functional behavior consisting of a series of steps that
run to completion, including support for starting,
stopping, restarting, halting, and resuming, and may be
run multiple times while a controller is running. Tasks
can be used to build controller programs consisting of a
series of Transient Tasks, with ability to restart and
navigate, or as standalone Resident Tasks to handle
specialized controller requirements, (e.g., axis homing or
ESTOP).
To integrate components, a framework is necessary to
formalize the collaborations and other life cycle aspects
in which components operate. The OMAC API uses
Microsoft Component Object Model (COM) as the initial
framework in which to develop components, with the
expected benefit that control vendors could then
concen t rate on a p plication-s pecific improvements that
define their strategic market-share - as opposed to
spending valuable program mi ng resources reinventing
and maintaining software “plumbing.” The primary
problem with COM framework, specifically under the
Windows 2000 operating system, is the lack of hard,
real-time preemptive scheduling, but third party
extensions to Windows 2000 can be used to overcome
this requirement.

Figure 16: Example of a Data and Process Interface for
the Functional Unit “Motion Control”

The data interface consists of several variable objects
that support the read andlor write access to data
structures (data flow). The data can be of a simple type
or of a complex type (array, structure, union). By using
formal templates (Figure 17) all the characteristics of a
single interface object are specified. These elements
cover the name (e.g, “mc-active-feed-override”), the
type (e.g. UNS32: 32-bit unsigned value), the scaling
(e.g. O.l%), the range and the access rights (read only,
write only, readlwrite) of the data. An additional
description is to avoid misinterpretations of the use of the
data.
The process interface consists of several process
objects that are used to describe the dynamic behavior
(control flow) of the application modules by means of
finite state machine (FSM). The state machines are
described by static states, dynamic states and transitions
to change the states of a given state-machine. The
transitions can handle input and output parameters to
pass data between application modules via the
communication platform. The formal template for such
process interfaces consists of an unambiguous
description and the following attributes : list of static
states (identifier, list of possible transitions), list of
dynamic states (identifier) and a list of transitions (input
parameters, output parameters, return codes). The
process interface can also be used to activate
application-specific functions in form of local or remote
procedure calls.
The interoperability of distributed application modules is
supported by an infrastructure (so-called OSACA
platform) which comprises client-server principles,
synchronous and asynchronous calls and event handling
via any underlying communication protocol and media
(e.g. by using the TCPllP protocol). A dedicated
configuration runtime system is handling the system’s
startup and shutdown. Besides, it also allows an easy
reconfiguration of the system.

Figure 15. Sketch of Open Modular Architecture
Controller API Functionality

Figure 15 illustrates a sketch of OMAC API controller
functionality. The HMI module is responsible for human
interaction with a controller including presenting data,
handling commands, and monitoring events and in the
OMAC API “mirrors” the actual controller with references
to all the major modules and components via proxy
agents. The Task Coordinator module is responsible for
sequencing operations and coordinating the various
modules in the system based on programmable Tasks.
The Task Coordinator can be considered the highest
level Finite State Machine in the controller. A Task
Generator module translates an application-specific
control program (e.g., RS 274 part program) into a series
of application-neutral Transient Tasks. The Axis Group
module is responsible for coordinating the motions of
individual axes, transforming an incoming motion
segment specification into a sequence of equi-time-
spaced setpoints for the coordinated axes. The Axis
module is responsible for servo control of axis motion,
transforming incoming motion setpoints into setpoints for
the corresponding actuators 10 points. The Control Law
component is responsible for servo control loop
calculations to reach specified setpoints.

OSACA (Europe)

In Europe the ESPRIT project OSACA (Open System
Architecture for Controls within Automation Systems)
was initiated in 1992 with the aim to unite European
interests and to create a vendor-neutral standard for
open control systems [9][16]. It was supported by major
European control vendors and machine tool builders.
OSACA reached a mature state already in April 1996
having at its disposal a stable set of specifications and a
tested pool for system software. Based on these results,
several application-oriented projects were carried out. In
1998 two pilot demonstrators in the automative industry
proved the in tero pera bi lity of OSACA-complian t
controllers and applications. The OSACA Association
with currently 35 members from all over the world is the
lasting organization to keep and maintain the OSACA-
related specifications.
The basic technical approach of the OSACA architecture
is the hierarchical decomposition of control functionality
into so-called functional units (Figure 16). For each of
these functional units (e.g. motion control, motion control
manager, axes control, logic control, etc.) the interfaces
are specified by applying object-oriented information
models. This technique is similar to the approach of
MAPlMMS but with a limited and manageable number of
object classes.

Figure 17: Use of formal templates to specify interfaces

The appliance of OSACA within several projects has
proved that the formal templates (as shown in Figure 17)
can not only be applied to the OSACA-specific
communication objects in combination with the OSACA-
specific infrastructure. Furthermore the OSACA

templates are ideally suited to standardize the data
which is passed by interfaces (e.g. DDE, OPC) that only
specify the access to data but not the semantics of the
data itself [15].

Comparison of the different OAC approaches
The comparison of the described OAC approaches
OMAC, OSACA and JOP shows that although there are
common basic elements the concepts are by far not
compatible to each other (Figure 18). There are major
differences in the module granularity and in the type of
architecture which have implications to the characteristic
of the API and the modeling principles [12].

Type of
Architecture

I OMAC I (Europe) OSACA (United States)

Component-based
Framework

Client-Server Wrapper

I I I I I

Infrastructure

Type of Appl.
Prog.lnterface

Level of
Modularity I medium I low I medium

Yes no no

Object-oriented Function Objectariented
Information model calls Methods

I I
Finite State
Machines

I I
IDL mapping to I c++ I I C, C++, JAVA

Programming
Language

I I I I I
Conformance
Tests I I yes I no I no

I I I I I

Figure 18: Comparison of OAC approaches

Global HMI Project
Already since 1996 the initiatives in Europe, the United
States and Japan have continuously discussed the
technical feasibility to harmonize the different results in
order to establish a common standard in the future. After
some time the groups decided to focus on the
development of a global HMI standard to share a unified
API for HMI design for OAC. The goal of the effort is to
define a HMI API for most of the control products in the
world. For this, first a common data model shall be
defined. This includes naming conventions, data typing
and other important attributes of the data to be
described. Second, a common service model with a well-
defined semantic shall be defined. Third, by combining
the data and the service models with a programming and
runtime environment, a common API shall be derived
(Figure 19). This proceeding separates the NC-relevant
technologies from the IT technology which has much
shorter innovation cycles.

Figure 19: Common Data and Service Model for a Global
HMI API

4.2 Other research activities

NIS T (USA)
Part of the National Institute of Standards and
Technology (NIST) mission is to develop measurements
and standards for intelligent control systems pertinent to
manufacturing industries. In this realm, NIST has long
viewed open, modular control architectures as critical to
this mission, which led to the development of the Real-
time Control System (RCS) as a standard reference
model for building real-time intelligent control systems
[8]. RCS has evolved over many years, and has resulted
in the develop men t of numerous con troller applications,
including the Enhanced Machine Controller (EMC). The
EMC offers real-time open-architecture control based on
open source and community software development
suitable for a variety of equipment, such as machine
tools, robots, and co-ordinate measuring machines [20].

University of British Columbia (Canada)
The University of British Columbia has developed a user
friendly, reconfigurable and modular tool kit for motion
and machining process control (ORTS). The tool kit uses
a script language to configure the control software in a
highly open and modular way. The system can be used
as an open architecture, modular operating system for
the progressive development of real-time signal
processing, motion and process control application.
Sample applications for machine tool control and sensor
assisted machining applications include CNC system for
a three axis machine tool, six axis robot, piezo tool
actuator, adaptive force control and tool condition
monitoring [14].

University of Michigan (USA)
The University of Michigan has a long tradition in
designing and developing control systems for multi-axes
machines. Research activities include finite state
machines (FSM) based design of machine control,
implementation of supervisory control and development
of Windows-based human machine interface (HMI).
Actual research activities cover the design of appropriate
control structures for reconfigurable machines and a
common HMI API for different CNC systems.

WZL, RWTH Aachen (Germany)
At WZL in Aachen a numerical control system for 5-axis
HSC-milling has been developed which is completely
based on the OSACA specification. It uses the OSACA
communication mechanisms for data exchange between
different control modules which are distributed on a PC
operated with Windows NT and a VME-System operated
with VxWorksTTornado. Further on, the conformance to
the OSACNHUMNOS specification has been assured by
following the conventions specified in the OSACA
reference architecture.

IS W, University of Stuttgart (Germany)
ISW in Stuttgart has a long tradition in designing open
modular control systems. In the 1980s the MPST project
dealt with a modular control architecture based on
hardware components integrated via a parallel bus.
Later, ISW has continuously worked on a modular,
software-based control architecture which is promoted
and maintained by a commercial spin-off company of
ISW. The Soft-CNC is based on OSACA principles and
is used by many well-known European control and
machine tool suppliers that want to have a maximum
flexibility when realizing their automation solution.
Typical applications are multi-axis machines for milling
and turning, parallel kinematics machines and special-
purpose machines, such as EDM and textile machines.

Collaborative research
Joint research work has been carried out between the
Universities of Michigan, British Columbia, Aachen and
Stuttgart. The research institutes have interfaced their
specific research results to fit into the OSACA
environment. UBC, ISW and WZL have cooperated to
realize a gateway which allows access to the process
control and monitoring tasks of ORTS via OSACA
commands. The University of Michigan and ISW have
jointly implemented a common HMI API for different
commercial and prototype CNC systems based on
OSACA principles .

5 CONFORMANCE TESTING AND CERTIFICATION
Despite the numerous and obvious advantages, vendor-
neutral OAC carries some unresolved legal and technical
issues. These include legal liability, loss of production
during installation of new functions and ensuring
technical performance after modifications and because
of difficulties in honoring timing constraints and correct
integration of modules [6].
In order to guarantee a maximum reliability of open
controllers suppliers must offer products which meet the
requirements of the given specifications and the
conformity must be proved and certified by an
independent organization. In conformance testing, a
product is tested using specified test cases to check that
it does not violate any of the specified requirements and
to check that it behaves consistently with respect to the
options that it is said to support. In an interoperability
test, a product is tested in a multi-vendor environment.
First, the product must be able to communicate with all
other products in the test-bed. Second, the product must
not disturb the communication between the other
products. This procedure corresponds to most of the
tests which are carried out by the different field-bus
organizations in the market.
Over the last years, the OSACA initiative in Europe has
realized a test system to check the conformance of
OSACA-based implementations (client and server
applications, as well as system platforms) [18]. In order
to test a server implementation a reference platform and
a so-called reference client is required (Figure 20). The
reference client is using test scripts which describe the
test and which can be executed as a batch job. The
automatic test guarantees the reproducibility and the
efficiency of the test even if the test itself is very
extensive.

Figure 20: Conformance Test of OSACA
Implementations

6 OUTLOOK AND SUMMARY
The described international initiatives and the different
activities in several research laboratories world-wide
show that there are many promising approaches on OAC
systems. Nevertheless, it must clearly been stated that
there is the risk to have many “vendor neutral”
incompatible control systems instead of many “vendor
proprietary” incompatible control systems. Therefore a
common initiative which is supported by all major groups
and the market leaders in the control business is
required. To be successful in this endeavor it is
important to keep the standardization of an appropriate

open controller architecture independent from the
mainstream development of IT standards. The Global
HMI approach is a very encouraging initiative to establish
a common API by defining a common data and service
model. By mapping these common models to different
programming and runtime environments,
i n te rc h a ng ea b i I it y and “ p I ug -a n d- p lay” mec h a n isms can
be achieved in reality.

7 REFERENCES
OSE Consortium, OSEC-I Project Report, Sept.
1995.
OSE Consortium, OSEC-II Project Report, Aug.
1996.
S. Fujita, T. Yoshida, 1996, OSE: Open System
Environment for Controller, 7th International Ma-
chine Tool Engineers Conference, Nov. 16-17: 234-
243.
Ueno, S., Chino, S., Hoshino, Y., Uneme, M., 2000,
Development of the Standard Application Program
Interface (API) for Open FA controller in Japan,
Proc. of the 15th Annual Meeting, ASPE: 296-299.
CNC Application Programming Interface, PAPI
Specification 1.01E, July 26, 1999,
http://www.mstc.or.jp/jop/oc/spec-e. html.
Y. Koren, 1998, “Open-Architecture Controllers for
Manufacturing Systems”, in: “Open Architecture
Control Systems”, ITlA Series.
F. Proctor, 1998, “Practical Open Architecture Con-
trollers for Manufacturing Applications”, in: “Open
Architecture Control Systems”, ITlA Series.
J.S. Albus, 1991, “Outline for a Theory of Intelli-
gence,” IEEE Trans. on Systems, Man, and Cyber-
netics, Vol. 21, No. 3, May/June.
M. Weck, 1993, “Offene NC-Systeme, Grundlage
herstellerunabhangiger Flexibilitat; VDI-Z 135 Nr. 5.
0 MAC Users Group , h ttp ://www. a rcwe b . co m/o mac.
OMAC API Workgroup, “OMAC API Reference
Documentation”,
http://www.isd.mel.nist.gov/projects/omacapi/
P. Lutz, 1998, “Comparison between the OSACA
and OMAC API approaches on an Open Controller
Architecture”, in: “Open Architecture Control Sys-
tems”, ITlA Series.
F. Jovane, 1998, “Open Architecture Control Sys-
tems - Summary of Global Activity”, ITlA Series.
N.A. Erol, Y. Altintas, M.R. Ito, “Open System Archi-
tecture Modular Tool Kit for Motion and Machining
Process Control”, ASMEAEEEE J. Mechatronics,
vol. 5, no.3: 281-291.
G. Pritschow, P. Lutz, 2000. ,,Design of a Common
Data Model for Vendor-independent Open Control
Systems”, WAC’2000 Conference.
G. Pritschow, G. Junghans, 1993, “Open System
Controllers - a Challenge for the Future of the Ma-
chine Tool Industry”, Annals of CIRP, 42/1: 449-
452.
Y. Koren et.al., 1999, “Reconfigurable Manufactur-
ing Systems”, CIRP Annals, vol. 2: 527-540.
K. Walde, 1999, “Certification Tool for OSACA
Software”, lo th DAAM Symposium, Vienna.
D. Binder, 1996, “Wie offen hatten Sie’s denn gern
?” - Offene Systeme in der Fertigung, Aachener
We rkze ug masch i n e n ko I loq u i u m .
F. Proctor, “The Enhanced Machine Controller,”
http://www.isd.mel.nist.gov/projects/emc/emc.htm

