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Abstract 

This paper describes the design and implementation of logic 
controllers on a small-scale machining line testbed using 
modular finite state machines. The logic is verified to be 
internally correct before being implemented on the testbed. 
Reconfiguration of the controller for a new manufacturing 
scenario is demonstrated, as is the integration of error han- 
dling. The ease of use of this modular finite state machine 
design methodology is discussed, as is the complexity of 
the resulting designs. Algorithms are presented for design, 
reconfiguration, and error handling integration. 

1 Introduction 

Reconfigurable machining lines are manufacturing systems 
that eliminate the need to create a new physical system 
when changes in the final product are made [4]. With re- 
configurable machining lines, rapid redesign of a system is 
made possible by making changes to an older system. In 
addition to the mechanical reconfiguration of the line, the 
logic controllers for the system must be reconfigured. 

In current practice, the control algorithms for manufactur- 
ing systems are written in ladder logic and implemented 
on proprietary computers called programmable logic con- 
trollers (PLC). The logic is extremely complex and a change 
in the manufacturing scenario can involve rewriting the en- 
tire code. It is commonly noted by industrial practitioners 
that “I generally find it easier to start over from scratch 
rather than modify an existing [Ladder Diagram], includ- 
ing my own.” [7, p. 1101 

One logic control language that has been proposed for 
manufacturing systems is based on Finite State Machines 
(FSMs) [l]. In the Modular Finite State Machine (MFSM) 
design methodology, there are control modules for each ma- 
chine module in addition to coordination modules. The in- 
terfaces between the modules are well-defined, and used for 
all communication. Theory exists so the combination of the 
modules are guaranteed to be internally correct (no dead- 
locks). This methodology restricts definition of the manu- 
facturing scenario (operation sequence) to only one control 
module, the control plan. The other control modules are in- 
dependent of the operation sequence. Thus, when the man- 
ufacturing scenario is altered, only the control plan needs to 
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be changed. Also, if mechanical modules are added to or re- 
moved from the system, the appropriate mechanical control 
modules must also be added or removed. The modularity of 
the control structure parallels that of the mechanical struc- 
ture, and enables the reconfigurability of both. 

In sharp contrast to  ladder programs used in industry, 
MFSM programs exhibit a strong modularity, a lack of 
global variables, and are verified at the design stage. These 
departures from the current programming practice raise 
questions of ease of use, implementation, reconfiguration, 
and extension of MFSM logic programs to which we for- 
mulate preliminary answers. First, we defhe algorithms 
for implementing and reconfiguring MFSM logic controllers. 
Second, we follow these algorithms to implement and recon- 
figure a logic controller. Finally, we evaluate the resulting 
programming process and code. The results of this research 
can be used to  compare the time needed not only for the 
programming and debugging of the code to run the system, 
but also for the reconfiguration of a manufacturing scenario. 

The outline of this paper is as follows. Section 2 gives more 
background on logic control for manufacturing systems, and 
describes our testbed. Section 3 provides an algorithm for 
developing logic control using MFSMs and section 4 for 
reconfiguring an existing system. Section 5 outlines the 
method for including error handling in the logic control. 
Finally, section 6 presents conclusions and suggestions for 
future work in using MFSMs. 

2 Background and testbed 
Manufacturing systems consist of many machines working 
together that require many inputs and outputs. Also, the 
machines must be coordinated to work simultaneously and 
be able to  handle error conditions. These factors combine 
to make the logic necessary for manufacturing systems ex- 
tremely complex. 

2.1 Logic control issues 
Logic control has historically been programmed in relay lad- 
der logic, a low-level programming language, and the pr+ 
grams for even a relatively small system rapidly become 
unwieldy. Although industry has recently moved towards 
developing one logic controller for each station on a line, 
each logic program is still extremely complex. 

Even though the functions of logic controllers for different 
machines may be similar, programming the control logic 
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Figure 1: T h e  manufacturing line testbed. 

takes approximately 50% of the total construction time for 
each new system since there is not yet a standard integrated 
tool with which to  carry out formal analysis of correctness. 
Validation through simulation is starting to be used, but 
many control systems are first tested on the mechanical 
system. A relatively long “cycle and debug” stage in the 
development process is needed. The reduction in product 
life-cycles has driven an economic need for shorter design 
and debug phases for the control code. Functional models 
of the machines are not typically constructed, so there is no 
reference model against which the control logic can be com- 
pared. As a result, it is not possible with current industry 
practice to  conduct formal analysis and systematic design 
of logic controllers. 

2.2 Manufactur ing line testbed 
The experimental testbed used in this work has three work- 
stations: a drill unit, a vertical boring machine with a three- 
position tool changing turret head, and a horizontal milling 
machine as shown in Figure 1. A conveyor belt is used to 
transport the work pieces. 

The testbed has 15 inputs (limit switches and proxim- 
ity sensors) and 12 outputs (motors). All 1/0 is binary 
(on/off). The system interfaces with a PC through a digi- 
tal 1/0 card. The software used to  implement the control 
detects changes in the input signals as events; rising edges 
are distinguished from falling edges. 

2.3 Specifications for logic control 
Two manufacturing scenarios were considered. In the origi- 
nal scenario, the drill drills one hole and the horizontal mill 
does one pass; the vertical mill is idle [2]. The sequence of 
events needed to complete this scenario are shown graph- 
ically in a timing bar chart in Figure 2. Operations that 
are causally linked (one should be started when the other 
completes) are indicated by vertical lines. In the revised 
scenario, the drill drills four holes, the vertical mill uses 
all three tools, and the horizontal mill does two passes [5]. 
Figure 3 shows the timing bar chart associated with this sce- 
nario. Short moves of various motors are used for a slight 
movement rather than a movement to a proximity sensor or 
limit switch. After implementing the overall control on both 
scenarios, error handling is added to the original scenario. 

2.4 MFSM software 
An FSM represents a discrete event system. FSMs are vi- 
sualized by a set of nodes representing states connected by 
arrows representing transitions. A transition from one state 
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Figure 2: The timing bar chart for the first scenario. 
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to another is triggered by an event which labels the arrow. 
A transition may also have actions associated with it, de- 
noted separately from the event with a slash symbol. When 
the event signaling a transition occurs, the actions are per- 
formed and the system moves to  the new state. 

To implement the MFSM controllers on the testbed, soft- 
ware developed at the University of Michigan was used [3]. 
Each control module is represented as a finite state ma- 
chine (FSM). The MFSM Software is used to verify that 
each module checks to  the ports connected to  it. In addi- 
tion, when modules are combined, the software determines 
whether the communication between modules occurs cor- 
rectly. If the communication is incorrect, a transition to 
the dump state is created, highlighting the location of the 
error. The verification software is written in Java and can 
create a single FSM from the collection of modules, which 
can then be converted into a set of “switch” statements. 
Headers and footers are added to  these switch statements 
to create a complete C program for implementation. 

3 Developing logic control 

In this section, we provide an algorithm to show how MFSM 
methodology can be used to develop logic controllers for 
manufacturing systems, and then illustrate this algorithm 
by applying it to the testbed example. 

Algorithm 1 Logic Control Construction 

Determine the modular structure of the system, with 
one module for  each workstation as in Figure 7. 
Determine the coordination structure between work- 
stations. Either a centralized control module or mul- 
tiple coordination modules (one per workstation and 
additional header and footer modules) can be used. 
Define the coordination control module(s). 
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Figure 4: Port between drill controller and drill control 
plan. 

(a)  Write the coordanation control module(s). I f  
multzple coordination modules are used, each co- 
ordination control module should communicate 
with a workstatson (through its control plan) and 
two other coordination control modules. I t  must 
communicate when to start the next station or 
stop the previous station to coordinate transfer 
of parts. A header and footer coordination con- 
trol module should be defined for  modularity. 

(b) Define the ports in the control structure. 
[c) Covert the modules and ports to the FSM text 

format needed f o r  verification. 

4. For each Workstation, 

(a) Determine the hierarchical modular structure as 
seen in Figure 8. This structure should include 
a control plan (the sequence of opemtions) and 
mechanical control modules which interface with 
the physical I/O. Each 1/0 point will communi- 
cate with only one mechanical control module. 

(b) Write the control plan module. A sample control 
plan is shown in Figure 9. 

(c)  Write the remaining mechanical control plan 
modules. 

(d)  Define the input and output ports for each me-  
chanical control module. One port of each me- 
chanical control module should interface to a 
higher-level control module and remaining ports 
with the 1/0 or lower-level control modules. 
Ports connecting control modules can be sim- 
ple two state ports such as Figure 4 or more 
complex such as Figure 5 to disallow some com- 
munication. Ports to  the physical system are 
generally simple as shown in Figure 6. 

(e)  Convert all modules and ports to FSM text. 
[ f )  Use MFSM Software to verify every module to  

each of its ports. If the modules do not check, 
modify the control modules and ports defined in 
steps 4b-4d. Repeat steps 4e and 4 f  as needed. 

5. Combine the control modules into a single FSM and 
verify the final module has no states connected to the 
dump state. If the verification fails, again modify the 
control modules and ports defined in steps 3-4 and 
repeat as needed. 

6. Convert the final combined FSM to C code and im- 
plement on the hardware. 

When the algorithm converges, the resulting logic controller 
is deadlock-free [3]. The verification of modules to ports and 
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Figure 5: Port between conveyor and workstation control 
plan. 
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Figure 6: Port between drill controller and spindle motor. 

the error messages from the combinations will locate errors 
in the logic by pinpointing the module which needs to be 
redefined so that the resulting logic controller will be veri- 
fied as correct. In contrast to current practice using ladder 
logic programming, this methodology requires a significant 
outlay of effort up-front to verify the absence of internal 
deadlocks. Although this may lengthen the programming 
process, it should decrease the time required to debug the 
code on the physical system, and increase code reusability. 

Example 1 (Testbed control development) 

Step 1. To implement the simple configuration (see Fig- 
ure 2), we divided the system into three workstations. 

S t ep  2. To move parts to the next workstation in the line, 
the conveyor of the current and next workstation must be 
on, so a control module on a higher level is needed. We be- 
gan by attempting to define a single module, but this mod- 
ule needed over 50 states and 100 transitions and was too 
difficult to complete. Instead, conveyor coordinator mod- 
ules were created for each workstation. These coordinators 
communicate with a workstation and two other coordina- 
tors to keep track of whether the next workstation is ready 
for a part, whether the previous workstation is sending it a 
part, and whether its workstation is working on a part. 

Conveyor coordinator header and footer modules were 
added as well. The header and footer modules were de- 
signed to send the same commands and responses that a 
coordinator module does, but made to be first and last in 
the sequence. These modules allow the coordinator mod- 
ules to be identical and therefore modular. See Figure 7 for 
overall control structure. 
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Figure 7: Overall control structure. 

Step 3. The state diagrams for the coordination modules 
were then drawn. The complete logic controller for the 
testbed can be fbund in [6]. 

Step 4. We began writing the logic control for the drill. 
We grouped the motors for the drill into those needed for 
transport (conveyor motor) and those needed for drilling 
(slide and spindle motors). A control plan was defined to 
coordinates these actions. The diagram for the drill control 
plan is shown in Figure 9. The initial state, indicated by the 
short arrow, is Idle. When the start (l.st) command from 
port 1 arrives, a load (2.load) command is issued through 
port 2 and the state transitions to  Movingl .  The rest of 
the diagram can be interpreted in the same manner. The 
ports that this module uses can be seen in Figure 8; they 
are numbered starting counterclockwise on top: port 1 of 
the drill control plan corresponds to  port A, 2 to B, and 3 to 
C. A drill controller was placed below the control plan that 
coordinates the spindle and slide. Because the spindle only 
needed to be turned on or off, its behavior was modeled 
by a port. The slide, however, needed to coordinate the 
slide motor with the limit switches so a slide module was 
created. Finally, a conveyor module was placed beneath 
the control pian to coordinate the conveyor motors with 
the proximity sensors. The control hierarchy of the drill is 
shown in Figure 8. Finally, the ports between each module 
were defined. Each module was checked to its ports. 

Next, we began writing the logic for each of the mills. 
The slide and conveyor modules used for the drill could 
be reused. The vertical mill does not use any of its tools in 
this scenario, so its logic was easy to complete. However, 
the motion of the horizontal mill was more complicated and 
we realized we needed a separate module for each degree of 
freedom (vertical and horizontal motion). The modules and 
ports for these workstation were converted to FSM text and 
the ports were verified to the modules. 

Step 5. Next, we began combining the modules into a sin- 
gle module representing the entire system. If a combination 
led to a state being connected to  the dump state, the FSM 
Verification software would give an error. We located the 
combination that gave the fist error, displayed that module 
and fixed that problem by modifying the control module. 
We repeated this debugging process until the combination 
was error-free. The combined FSM had 1102 states. 

S t e p  6. Finally, we ran the FSM to C conversion, result- 
ing in 97893 lines of code (including comments and white 
space), and implemented it on the testbed. 

4 Reconfiguration of logic control 

One advantage of the MFSM design method over existing 
techniques is the ease of reconfigurability due to the mod- 
ularity of the logic control. In this section, we provide an 
algorithm for the reconfiguration of an already existing sys- 
tem, and use the testbed as an example. 

Figure 8: T h e  control structure for t h e  drill. 

Algorithm 2 Logic Control Reconfiguration 

1 .  Determine what new modules are needed and place 
them in  the existing control structure. New modules 
are needed when a previously unused motor or sensor 
is used. Define these modules and their associated 
ports an the same manner as in  Algorithm 1 .  

2. Determine what modules (other than the control plan) 
and ports need to be changed and make the alter- 
ations. Sometimes, new commands in previously de- 
fined modules will be necessary if the new scenario 
requires new functionality. 

3. Alter the control plan modules. The states associated 
with the loading and unloading of the part should be 
grouped together since theys will usually remain un- 
changed. The remaining states will be those assocd- 
ated with the operations the workstation performs and 
will need to be altered for  the new scenario. Alter the 
ports if necessary. 

Example 2 (Testbed control reconfiguration) 

Step 1. We reconfigured the original scenario to the one 
shown in Figure 3. All the modules needed for this scenario 
were already defined. 

S t e p  2. However, since the drill and horizontal mill needed 
to use short moves of the part and slide (only the mill), new 
ports and states were added to  the conveyor module and 
horizontal mill vertical motion controller module. 

Step 3. Finally, the control plans were changed by group- 
ing states as described in step 3 and selecting the states 
associated with working on the part for alterations. With 
the drill and horizontal mill, a new state was added in case 
the short move command moved the part off the worksta- 
tion. See Figures 9-10 for the control plan of the drill work- 
station for both scenarios. In the reconfigured drill control 
plan, the port numbers are unchanged from the first sce- 
nario. The addition of the states Drilling2-4 for the extra 
holes and Moving3-5 for the short moves of the parts. 
Also, an Off Part state was added in the case where the 
short move moves the part off the workstation. In addi- 
tion, two new states were added to the vertical mill so that 
the tool changer was in the home position before working 
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Figure 9: Drill control plan for original scenario. 

above do not explicitly take into account error handling. 
Possible errors in a logic control system can be divided into 
two categories: an unexpected event occurs or an expected 
event does not occur. We provide an algorithm to show how 
error handling can be added to a MFSM logic controller. We 
then apply this algorithm to our example for two different 
error cases in the original scenario: an unexpected part 
entering the middle of the machining line, and an expected 
part not completing its transfer to the next workstation. 
Algorithm 3 Logic control error handling 

For either error case, identify the module lowest in 
the control hierarchy that needs to recognize the er- 
ror. Appropriate commands and states for the error 
handling should be added to that module's state dda- 
grams. 
Move to  the next level up in the control structure and 
make any necessary alterations. This step should be 
repeated until no further changes are needed, or the 
coordinator module is reached. 
Alter the coordinator module as needed and use new 
coordinators for all Workstations. Any changes in the 
coordinator module may propagate down the control 
hierarchy. 

Figure 10: Drill control plan for reconfigured scenario. 

on the- first part. The transfer of the parts between the 
workstations remained the same so the conveyor header, 
coordinators, and footer were not altered. The complete 
logic control diagrams can be found in [SI. 

In the both scenarios, twenty modules and thirty-six ports 
were used. Of the twenty modules in the second scenario, 
fourteen were reused from the first with no alterations. 
Three of the six that were altered were the control plans 
for each workstation. Seven states and ten transitions were 
added to the drill control plan, eight states and eight transi- 
tions to the vertical mill, and four states and five transitions 
to the horizontal mill. The horizontal mill vertical motion 
controller module was altered to allow short moves by the 
addition of two states and six transitions. The final two al- 
tered modules were the conveyors for the drill and horizon- 
tal mill whcre the addition of two states and six transitions 
allowed for short moves of the part. 

~ 

Finally, the new control modules were combined. Because 
most of the modules were identical to the previous scenario, 
any errors were associated with the altered modules or the 
new commands making the errors simple to locate. The 
combined module was then converted to C code and imple- 
mented on the testbed. 

5 Integration of error handling in  logic control 

One important function of a logic controller is to handle 
errors and exceptions. However, the procedures described 

Example 3 (Integration of unexpected part error) 

Step. 1. We began by allowing the conveyor module to 
identify a part if it  is idle with no part and to alert the 
control plan. 

Step 2. Because the operations in a system usually need 
to be performed in a specific order, this part must not be 
worked on. Therefore, the station at  which it is placed must 
recognize the part as a "bad" part and send it to the next 
station. The control plan was recoded to enter a new state, 
turn its conveyor on, and let the coordinators know that an 
unexpected part is present. 

S tep  3. A new command was added to the coordinator so 
it c m  tell the next coordinator of the unexpected part. Sub- 
sequent workstation control plans were altered as in step 5 
so the part is passed to the end of the machining line. 

Example 4 (Integration of t imeout error) 

S tep  1. We added a transfer timer to the conveyors that 
signaled an error if the it finished before a part was received. 

Step 2. The control plans for each workstation were altered 
to return to idle if the conveyor sent out a timeout error. 
This meant the workstation assumed the part was lost and 
could continue working as normal with future parts. 

S tep  3. The coordinators for the workstations involved in 
the transfer were trasitioned from working to idle due to 
this error. 

The coordination modules (including the header and footer) 
as seen in Figure 7, the control plans for each workstation, 
and the conveyor modules as seen in Figure 8 for the drill 
needed to be altered to  handle both error cases. The new 
drill control plan can be seen in Figure 11. We added the 
response of error (when the timer runs out  before a part is 
received) and unexpected-part (when a part is received 
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Figure 11: Drill control pian with error handling. 

in the idle state) to the conveyor module. The control plan 
modules of each workstation were altered to respond with 
an epc (error part complete) to signal that the “bad” 
part was ready to be transferred. In addition, the response 
of inctr (incomplete transfer) was used to alert the co- 
ordinator the part sent was never received. Also, each con- 
trol plan was allowed to accept the command of est (error 
s ta r t )  to start its conveyor, but not work on the part. Fi- 
nally, the conveyor coordinator modules were allowed to 
communicate whether a “bad” part had arrived or a part 
had never arrived at its station (by using epa (error part 
arrived) and inctr (incomplete transfer)). They also 
would tell the next coordinator to  start its station in error 
mode (est (error s tar t ) ) .  The complete logic, including 
both error handling scenarios, can be found in [6]. 

A total of eleven modules needed to be altered to include 
error handling. Three of these were conveyor modules and 
were changed identically by adding two transitions and al- 
tering one. One state and seven trasitions were added to 
each workstation control plan. Five transitions were added 
to the coordinator header, one state and twenty-one transi- 
tions were added to  each of the three coordinator modules 
and one transition to  the coordinator footer. 

6 Conclusions and Future Work 
The use of FSMs in the logic control of manufacturing sys- 
tems allows the complexity of the manufacturing scenario 
to be placed in the control plans of each workstation so al- 
terations to the scenario only involve changing the control 
plan. Additions, such as error handling, are relatively sim- 
ple to make. After the first scenario was implemented on 
the testbed, the second scenario took only a few days to  
implement. The error handling was inserted in a few hours. 
This demonstrates the use of MFSMs makes these changes 
easy and fast. 

In the future, We would like to  reconfigure a machining 
line only by changing the only control plan (eliminating 
steps 1 and 2 in Algorithm 2). Developing code for different 
scenarios would create all possible commands in previously 
defined modules. The modules would reach completion and 
reconfiguration would be a single step. 

Also, the more complicated second scenario led to an ex- 
tremely large combined module (about 8500 states). The 
Java program ran out of memory when combining the mod- 

ules, and when converting the combined module to switch 
statements. In addition, the C compiler ran out of mem- 
ory. If the MFSM could be executed in a modular fashion, 
memory errors would be eliminated (although this would 
require altering the existing software environment). 

The error handling that we worked on was specifically for 
two cases. More work on error handling should be done for 
broader cases. While testing the testbed codes, sensors were 
brushed accidentally and the system would enter the wrong 
states. It should be possible to  modify the controller to 
handle these errors correctly, and the system would become 
much more robust. 
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