
Proceedings of the American Control Conference
Anchorage, AK May 8-10.2002

Reconfigurable Logic Control using Modular FSMs:
Design, Verification, Implementation, and Integrated Error

Handling’
S. S. Shah

The University of California
Department of Mechanical Engineering

Berkeley, CA 94720
sshah@newton. berkeley.edu

Abstract

This paper describes the design and implementation of logic
controllers on a small-scale machining line testbed using
modular finite state machines. The logic is verified to be
internally correct before being implemented on the testbed.
Reconfiguration of the controller for a new manufacturing
scenario is demonstrated, as is the integration of error han-
dling. The ease of use of this modular finite state machine
design methodology is discussed, as is the complexity of
the resulting designs. Algorithms are presented for design,
reconfiguration, and error handling integration.

1 Introduction

Reconfigurable machining lines are manufacturing systems
that eliminate the need to create a new physical system
when changes in the final product are made [4]. With re-
configurable machining lines, rapid redesign of a system is
made possible by making changes to an older system. In
addition to the mechanical reconfiguration of the line, the
logic controllers for the system must be reconfigured.

In current practice, the control algorithms for manufactur-
ing systems are written in ladder logic and implemented
on proprietary computers called programmable logic con-
trollers (PLC). The logic is extremely complex and a change
in the manufacturing scenario can involve rewriting the en-
tire code. It is commonly noted by industrial practitioners
that “I generally find it easier to start over from scratch
rather than modify an existing [Ladder Diagram], includ-
ing my own.” [7, p. 1101

One logic control language that has been proposed for
manufacturing systems is based on Finite State Machines
(FSMs) [l]. In the Modular Finite State Machine (MFSM)
design methodology, there are control modules for each ma-
chine module in addition to coordination modules. The in-
terfaces between the modules are well-defined, and used for
all communication. Theory exists so the combination of the
modules are guaranteed to be internally correct (no dead-
locks). This methodology restricts definition of the manu-
facturing scenario (operation sequence) to only one control
module, the control plan. The other control modules are in-
dependent of the operation sequence. Thus, when the man-
ufacturing scenario is altered, only the control plan needs to

’This research was supported in part by the NSF under grant
EEC95-92125.

E. W. Endsley, M. R. Lucas, and D. M. Tilbury
The University of Michigan

Department of Mechanical Engineering
Ann Arbor, MI 48109-2125

{ ericend,mrlucas,tilbury) @umich.edu

be changed. Also, if mechanical modules are added to or re-
moved from the system, the appropriate mechanical control
modules must also be added or removed. The modularity of
the control structure parallels that of the mechanical struc-
ture, and enables the reconfigurability of both.

In sharp contrast to ladder programs used in industry,
MFSM programs exhibit a strong modularity, a lack of
global variables, and are verified at the design stage. These
departures from the current programming practice raise
questions of ease of use, implementation, reconfiguration,
and extension of MFSM logic programs to which we for-
mulate preliminary answers. First, we defhe algorithms
for implementing and reconfiguring MFSM logic controllers.
Second, we follow these algorithms to implement and recon-
figure a logic controller. Finally, we evaluate the resulting
programming process and code. The results of this research
can be used to compare the time needed not only for the
programming and debugging of the code to run the system,
but also for the reconfiguration of a manufacturing scenario.

The outline of this paper is as follows. Section 2 gives more
background on logic control for manufacturing systems, and
describes our testbed. Section 3 provides an algorithm for
developing logic control using MFSMs and section 4 for
reconfiguring an existing system. Section 5 outlines the
method for including error handling in the logic control.
Finally, section 6 presents conclusions and suggestions for
future work in using MFSMs.

2 Background and testbed
Manufacturing systems consist of many machines working
together that require many inputs and outputs. Also, the
machines must be coordinated to work simultaneously and
be able to handle error conditions. These factors combine
to make the logic necessary for manufacturing systems ex-
tremely complex.

2.1 Logic control issues
Logic control has historically been programmed in relay lad-
der logic, a low-level programming language, and the pr+
grams for even a relatively small system rapidly become
unwieldy. Although industry has recently moved towards
developing one logic controller for each station on a line,
each logic program is still extremely complex.

Even though the functions of logic controllers for different
machines may be similar, programming the control logic

0-7a03-7298-01oa$i 7.00 o 2002 AACC 41 53

http://berkeley.edu
mailto:umich.edu

Figure 1: T h e manufacturing line testbed.

takes approximately 50% of the total construction time for
each new system since there is not yet a standard integrated
tool with which to carry out formal analysis of correctness.
Validation through simulation is starting to be used, but
many control systems are first tested on the mechanical
system. A relatively long “cycle and debug” stage in the
development process is needed. The reduction in product
life-cycles has driven an economic need for shorter design
and debug phases for the control code. Functional models
of the machines are not typically constructed, so there is no
reference model against which the control logic can be com-
pared. As a result, it is not possible with current industry
practice to conduct formal analysis and systematic design
of logic controllers.

2.2 Manufactur ing line testbed
The experimental testbed used in this work has three work-
stations: a drill unit, a vertical boring machine with a three-
position tool changing turret head, and a horizontal milling
machine as shown in Figure 1. A conveyor belt is used to
transport the work pieces.

The testbed has 15 inputs (limit switches and proxim-
ity sensors) and 12 outputs (motors). All 1/0 is binary
(on/off). The system interfaces with a PC through a digi-
tal 1/0 card. The software used to implement the control
detects changes in the input signals as events; rising edges
are distinguished from falling edges.

2.3 Specifications for logic control
Two manufacturing scenarios were considered. In the origi-
nal scenario, the drill drills one hole and the horizontal mill
does one pass; the vertical mill is idle [2]. The sequence of
events needed to complete this scenario are shown graph-
ically in a timing bar chart in Figure 2. Operations that
are causally linked (one should be started when the other
completes) are indicated by vertical lines. In the revised
scenario, the drill drills four holes, the vertical mill uses
all three tools, and the horizontal mill does two passes [5].
Figure 3 shows the timing bar chart associated with this sce-
nario. Short moves of various motors are used for a slight
movement rather than a movement to a proximity sensor or
limit switch. After implementing the overall control on both
scenarios, error handling is added to the original scenario.

2.4 MFSM software
An FSM represents a discrete event system. FSMs are vi-
sualized by a set of nodes representing states connected by
arrows representing transitions. A transition from one state

JOperation 1
IConveyor 2 I art Transportation (Conveyor 1

I (Cutter On I I

Figure 2: The timing bar chart for the first scenario.

. . 1

t I I

Figure 3: Second scenario t iming bar chart.

-. C I I I . I I . . . L . I

to another is triggered by an event which labels the arrow.
A transition may also have actions associated with it, de-
noted separately from the event with a slash symbol. When
the event signaling a transition occurs, the actions are per-
formed and the system moves to the new state.

To implement the MFSM controllers on the testbed, soft-
ware developed at the University of Michigan was used [3].
Each control module is represented as a finite state ma-
chine (FSM). The MFSM Software is used to verify that
each module checks to the ports connected to it. In addi-
tion, when modules are combined, the software determines
whether the communication between modules occurs cor-
rectly. If the communication is incorrect, a transition to
the dump state is created, highlighting the location of the
error. The verification software is written in Java and can
create a single FSM from the collection of modules, which
can then be converted into a set of “switch” statements.
Headers and footers are added to these switch statements
to create a complete C program for implementation.

3 Developing logic control

In this section, we provide an algorithm to show how MFSM
methodology can be used to develop logic controllers for
manufacturing systems, and then illustrate this algorithm
by applying it to the testbed example.

Algorithm 1 Logic Control Construction

Determine the modular structure of the system, with
one module for each workstation as in Figure 7.
Determine the coordination structure between work-
stations. Either a centralized control module or mul-
tiple coordination modules (one per workstation and
additional header and footer modules) can be used.
Define the coordination control module(s).

41 54

Drill ??$a-, Working

Don e

Figure 4: Port between drill controller and drill control
plan.

(a) Write the coordanation control module(s). I f
multzple coordination modules are used, each co-
ordination control module should communicate
with a workstatson (through its control plan) and
two other coordination control modules. I t must
communicate when to start the next station or
stop the previous station to coordinate transfer
of parts. A header and footer coordination con-
trol module should be defined for modularity.

(b) Define the ports in the control structure.
[c) Covert the modules and ports to the FSM text

format needed f o r verification.

4. For each Workstation,

(a) Determine the hierarchical modular structure as
seen in Figure 8. This structure should include
a control plan (the sequence of opemtions) and
mechanical control modules which interface with
the physical I/O. Each 1/0 point will communi-
cate with only one mechanical control module.

(b) Write the control plan module. A sample control
plan is shown in Figure 9.

(c) Write the remaining mechanical control plan
modules.

(d) Define the input and output ports for each me-
chanical control module. One port of each me-
chanical control module should interface to a
higher-level control module and remaining ports
with the 1/0 or lower-level control modules.
Ports connecting control modules can be sim-
ple two state ports such as Figure 4 or more
complex such as Figure 5 to disallow some com-
munication. Ports to the physical system are
generally simple as shown in Figure 6.

(e) Convert all modules and ports to FSM text.
[f) Use MFSM Software to verify every module to

each of its ports. If the modules do not check,
modify the control modules and ports defined in
steps 4b-4d. Repeat steps 4e and 4 f as needed.

5. Combine the control modules into a single FSM and
verify the final module has no states connected to the
dump state. If the verification fails, again modify the
control modules and ports defined in steps 3-4 and
repeat as needed.

6. Convert the final combined FSM to C code and im-
plement on the hardware.

When the algorithm converges, the resulting logic controller
is deadlock-free [3]. The verification of modules to ports and

Load/ a Unload

Figure 5: Port between conveyor and workstation control
plan.

Ds indle-on

?T=

Figure 6: Port between drill controller and spindle motor.

the error messages from the combinations will locate errors
in the logic by pinpointing the module which needs to be
redefined so that the resulting logic controller will be veri-
fied as correct. In contrast to current practice using ladder
logic programming, this methodology requires a significant
outlay of effort up-front to verify the absence of internal
deadlocks. Although this may lengthen the programming
process, it should decrease the time required to debug the
code on the physical system, and increase code reusability.

Example 1 (Testbed control development)

Step 1. To implement the simple configuration (see Fig-
ure 2), we divided the system into three workstations.

S t ep 2. To move parts to the next workstation in the line,
the conveyor of the current and next workstation must be
on, so a control module on a higher level is needed. We be-
gan by attempting to define a single module, but this mod-
ule needed over 50 states and 100 transitions and was too
difficult to complete. Instead, conveyor coordinator mod-
ules were created for each workstation. These coordinators
communicate with a workstation and two other coordina-
tors to keep track of whether the next workstation is ready
for a part, whether the previous workstation is sending it a
part, and whether its workstation is working on a part.

Conveyor coordinator header and footer modules were
added as well. The header and footer modules were de-
signed to send the same commands and responses that a
coordinator module does, but made to be first and last in
the sequence. These modules allow the coordinator mod-
ules to be identical and therefore modular. See Figure 7 for
overall control structure.

41 55

Figure 7: Overall control structure.

Step 3. The state diagrams for the coordination modules
were then drawn. The complete logic controller for the
testbed can be fbund in [6].

Step 4. We began writing the logic control for the drill.
We grouped the motors for the drill into those needed for
transport (conveyor motor) and those needed for drilling
(slide and spindle motors). A control plan was defined to
coordinates these actions. The diagram for the drill control
plan is shown in Figure 9. The initial state, indicated by the
short arrow, is Idle. When the start (l.st) command from
port 1 arrives, a load (2.load) command is issued through
port 2 and the state transitions to Movingl . The rest of
the diagram can be interpreted in the same manner. The
ports that this module uses can be seen in Figure 8; they
are numbered starting counterclockwise on top: port 1 of
the drill control plan corresponds to port A, 2 to B, and 3 to
C. A drill controller was placed below the control plan that
coordinates the spindle and slide. Because the spindle only
needed to be turned on or off, its behavior was modeled
by a port. The slide, however, needed to coordinate the
slide motor with the limit switches so a slide module was
created. Finally, a conveyor module was placed beneath
the control pian to coordinate the conveyor motors with
the proximity sensors. The control hierarchy of the drill is
shown in Figure 8. Finally, the ports between each module
were defined. Each module was checked to its ports.

Next, we began writing the logic for each of the mills.
The slide and conveyor modules used for the drill could
be reused. The vertical mill does not use any of its tools in
this scenario, so its logic was easy to complete. However,
the motion of the horizontal mill was more complicated and
we realized we needed a separate module for each degree of
freedom (vertical and horizontal motion). The modules and
ports for these workstation were converted to FSM text and
the ports were verified to the modules.

Step 5. Next, we began combining the modules into a sin-
gle module representing the entire system. If a combination
led to a state being connected to the dump state, the FSM
Verification software would give an error. We located the
combination that gave the fist error, displayed that module
and fixed that problem by modifying the control module.
We repeated this debugging process until the combination
was error-free. The combined FSM had 1102 states.

S t e p 6. Finally, we ran the FSM to C conversion, result-
ing in 97893 lines of code (including comments and white
space), and implemented it on the testbed.

4 Reconfiguration of logic control

One advantage of the MFSM design method over existing
techniques is the ease of reconfigurability due to the mod-
ularity of the logic control. In this section, we provide an
algorithm for the reconfiguration of an already existing sys-
tem, and use the testbed as an example.

Figure 8: T h e control structure for t h e drill.

Algorithm 2 Logic Control Reconfiguration

1 . Determine what new modules are needed and place
them in the existing control structure. New modules
are needed when a previously unused motor or sensor
is used. Define these modules and their associated
ports an the same manner as in Algorithm 1 .

2. Determine what modules (other than the control plan)
and ports need to be changed and make the alter-
ations. Sometimes, new commands in previously de-
fined modules will be necessary if the new scenario
requires new functionality.

3. Alter the control plan modules. The states associated
with the loading and unloading of the part should be
grouped together since theys will usually remain un-
changed. The remaining states will be those assocd-
ated with the operations the workstation performs and
will need to be altered for the new scenario. Alter the
ports if necessary.

Example 2 (Testbed control reconfiguration)

Step 1. We reconfigured the original scenario to the one
shown in Figure 3. All the modules needed for this scenario
were already defined.

S t e p 2. However, since the drill and horizontal mill needed
to use short moves of the part and slide (only the mill), new
ports and states were added to the conveyor module and
horizontal mill vertical motion controller module.

Step 3. Finally, the control plans were changed by group-
ing states as described in step 3 and selecting the states
associated with working on the part for alterations. With
the drill and horizontal mill, a new state was added in case
the short move command moved the part off the worksta-
tion. See Figures 9-10 for the control plan of the drill work-
station for both scenarios. In the reconfigured drill control
plan, the port numbers are unchanged from the first sce-
nario. The addition of the states Drilling2-4 for the extra
holes and Moving3-5 for the short moves of the parts.
Also, an Off Part state was added in the case where the
short move moves the part off the workstation. In addi-
tion, two new states were added to the vertical mill so that
the tool changer was in the home position before working

41 56

TrsmsBr Moving1

Figure 9: Drill control plan for original scenario.

above do not explicitly take into account error handling.
Possible errors in a logic control system can be divided into
two categories: an unexpected event occurs or an expected
event does not occur. We provide an algorithm to show how
error handling can be added to a MFSM logic controller. We
then apply this algorithm to our example for two different
error cases in the original scenario: an unexpected part
entering the middle of the machining line, and an expected
part not completing its transfer to the next workstation.
Algorithm 3 Logic control error handling

For either error case, identify the module lowest in
the control hierarchy that needs to recognize the er-
ror. Appropriate commands and states for the error
handling should be added to that module's state dda-
grams.
Move to the next level up in the control structure and
make any necessary alterations. This step should be
repeated until no further changes are needed, or the
coordinator module is reached.
Alter the coordinator module as needed and use new
coordinators for all Workstations. Any changes in the
coordinator module may propagate down the control
hierarchy.

Figure 10: Drill control plan for reconfigured scenario.

on the- first part. The transfer of the parts between the
workstations remained the same so the conveyor header,
coordinators, and footer were not altered. The complete
logic control diagrams can be found in [SI.

In the both scenarios, twenty modules and thirty-six ports
were used. Of the twenty modules in the second scenario,
fourteen were reused from the first with no alterations.
Three of the six that were altered were the control plans
for each workstation. Seven states and ten transitions were
added to the drill control plan, eight states and eight transi-
tions to the vertical mill, and four states and five transitions
to the horizontal mill. The horizontal mill vertical motion
controller module was altered to allow short moves by the
addition of two states and six transitions. The final two al-
tered modules were the conveyors for the drill and horizon-
tal mill whcre the addition of two states and six transitions
allowed for short moves of the part.

~

Finally, the new control modules were combined. Because
most of the modules were identical to the previous scenario,
any errors were associated with the altered modules or the
new commands making the errors simple to locate. The
combined module was then converted to C code and imple-
mented on the testbed.

5 Integration of error handling in logic control

One important function of a logic controller is to handle
errors and exceptions. However, the procedures described

Example 3 (Integration of unexpected part error)

Step. 1. We began by allowing the conveyor module to
identify a part if it is idle with no part and to alert the
control plan.

Step 2. Because the operations in a system usually need
to be performed in a specific order, this part must not be
worked on. Therefore, the station at which it is placed must
recognize the part as a "bad" part and send it to the next
station. The control plan was recoded to enter a new state,
turn its conveyor on, and let the coordinators know that an
unexpected part is present.

S tep 3. A new command was added to the coordinator so
it c m tell the next coordinator of the unexpected part. Sub-
sequent workstation control plans were altered as in step 5
so the part is passed to the end of the machining line.

Example 4 (Integration of t imeout error)

S tep 1. We added a transfer timer to the conveyors that
signaled an error if the it finished before a part was received.

Step 2. The control plans for each workstation were altered
to return to idle if the conveyor sent out a timeout error.
This meant the workstation assumed the part was lost and
could continue working as normal with future parts.

S tep 3. The coordinators for the workstations involved in
the transfer were trasitioned from working to idle due to
this error.

The coordination modules (including the header and footer)
as seen in Figure 7, the control plans for each workstation,
and the conveyor modules as seen in Figure 8 for the drill
needed to be altered to handle both error cases. The new
drill control plan can be seen in Figure 11. We added the
response of error (when the timer runs out before a part is
received) and unexpected-part (when a part is received

41 57

Figure 11: Drill control pian with error handling.

in the idle state) to the conveyor module. The control plan
modules of each workstation were altered to respond with
an epc (error part complete) to signal that the “bad”
part was ready to be transferred. In addition, the response
of inctr (incomplete transfer) was used to alert the co-
ordinator the part sent was never received. Also, each con-
trol plan was allowed to accept the command of est (error
s ta r t) to start its conveyor, but not work on the part. Fi-
nally, the conveyor coordinator modules were allowed to
communicate whether a “bad” part had arrived or a part
had never arrived at its station (by using epa (error part
arrived) and inctr (incomplete transfer)). They also
would tell the next coordinator to start its station in error
mode (est (error s tar t)) . The complete logic, including
both error handling scenarios, can be found in [6].

A total of eleven modules needed to be altered to include
error handling. Three of these were conveyor modules and
were changed identically by adding two transitions and al-
tering one. One state and seven trasitions were added to
each workstation control plan. Five transitions were added
to the coordinator header, one state and twenty-one transi-
tions were added to each of the three coordinator modules
and one transition to the coordinator footer.

6 Conclusions and Future Work
The use of FSMs in the logic control of manufacturing sys-
tems allows the complexity of the manufacturing scenario
to be placed in the control plans of each workstation so al-
terations to the scenario only involve changing the control
plan. Additions, such as error handling, are relatively sim-
ple to make. After the first scenario was implemented on
the testbed, the second scenario took only a few days to
implement. The error handling was inserted in a few hours.
This demonstrates the use of MFSMs makes these changes
easy and fast.

In the future, We would like to reconfigure a machining
line only by changing the only control plan (eliminating
steps 1 and 2 in Algorithm 2). Developing code for different
scenarios would create all possible commands in previously
defined modules. The modules would reach completion and
reconfiguration would be a single step.

Also, the more complicated second scenario led to an ex-
tremely large combined module (about 8500 states). The
Java program ran out of memory when combining the mod-

ules, and when converting the combined module to switch
statements. In addition, the C compiler ran out of mem-
ory. If the MFSM could be executed in a modular fashion,
memory errors would be eliminated (although this would
require altering the existing software environment).

The error handling that we worked on was specifically for
two cases. More work on error handling should be done for
broader cases. While testing the testbed codes, sensors were
brushed accidentally and the system would enter the wrong
states. It should be possible to modify the controller to
handle these errors correctly, and the system would become
much more robust.

References
[l] C. G. Cassandras and S. L. Lafortune. Introduction
to Discrete Event Systems. Kluwer, Boston, 1999.
[2] A. Denault. Logic control reconfiguration for a ma-
chining line testbed. Technical report, University of Michi-
gan, Mechanical Engineering, April 2001. M E 490 Indepen-
dent Research Report.
131 E. W. Endsley, M. R. Lucas, andD. M. Tilbury. Soft-
ware tools for verification of modular FSM based logic con-
trol for use in reconfigurable machine tools. In Proceedings
of the Japan-U.S.A. Symposium o n Flexible Automation,
2000.
[4] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki,
G. Pritschow, G. Ulsoy, and H. Van Brussel. Reconfigurable
manufacturing systems. CIRP Annals-Manufacturing
Technology, 48(2):527-540, 1999.
[5] S. S. Shah. Logic control design for a machining line
testbed using modular finite state machines. Technical re-
port, University of Michigan, Mechanical Engineering, De-
cember 2000. ME 490 Independent Research Report.
[6] S. S. Shah. MFSM logic control programs for the
machining line testbed, August 2001.
[7] V. VanDoren. Designing PLC-based control without
ladder logic. Control Engineering, 43:110, June 1996.

41 58

